The Office of the
Government Chief Information Officer

INTERNET GATEWAY SECURITY GUIDELINES

[G50]

Version : 5.0

September 2012
The Government of the Hong Kong Special Administrative Region
COPYRIGHT NOTICE

© 2012 by the Government of the Hong Kong Special Administrative Region

Unless otherwise indicated, the copyright in the works contained in this publication is owned by the Government of the Hong Kong Special Administrative Region. You may generally copy and distribute these materials in any format or medium provided the following conditions are met –

(a) the particular item has not been specifically indicated to be excluded and is therefore not to be copied or distributed;
(b) the copying is not done for the purpose of creating copies for sale;
(c) the materials must be reproduced accurately and must not be used in a misleading context; and
(d) the copies shall be accompanied by the words “copied/distributed with the permission of the Government of the Hong Kong Special Administrative Region. All rights reserved.”

If you wish to make copies for purposes other than that permitted above, you should seek permission by contacting the Office of the Government Chief Information Officer.
TABLE OF CONTENTS

1. PURPOSE ...1-1

2. SCOPE ...2-1

2.1 IT SECURITY DOCUMENT OVERVIEW ..2-2

3. REFERENCE ..3-1

3.1 STANDARDS AND GUIDELINES ...3-1

3.2 OTHER REFERENCES ...3-1

4. DEFINITIONS AND CONVENTIONS ..4-1

4.1 DEFINITIONS ...4-1

4.2 CONVENTIONS ..4-1

5. INTERNET GATEWAY OVERVIEW ...5-1

5.1 INTERCONNECTION OF NETWORKS ...5-1

5.2 RECOMMENDED SECURITY PROTECTION ..5-1

5.3 INTERNET GATEWAY ARCHITECTURE SAMPLE ...5-3

5.3.1 Web Servers ..5-4

5.3.2 Domain Name System (DNS) Servers ...5-4

5.3.3 Intrusion Detection and Monitoring ...5-5

5.3.4 Firewalls ..5-5

5.3.5 Protection against Computer Virus and Malicious Code ...5-6

5.3.6 Remote Access Servers (RAS) and Modem Pool ...5-6

5.3.7 Proxy Servers ...5-6

5.3.8 Authentication Servers ...5-7

6. FIREWALLS ...6-1

6.1 FIREWALL CONFIGURATION ...6-1

6.2 FIREWALL ADMINISTRATION ...6-2

7. ROUTERS ..7-1

8. MAIL GATEWAY SECURITY ...8-1

8.1 MAIL SERVER DESIGN AND CONFIGURATION ...8-1

8.2 EMAIL BOMBING, SPAMMING AND SPOOFING ...8-1

8.3 ACCESS CONTROL ...8-3

9. WEB SECURITY ..9-1

9.1 WEB SERVER CONFIGURATION AND ADMINISTRATION ...9-1

9.2 ACCESS CONTROL ...9-2

9.3 WEB CONTENT MANAGEMENT ..9-2

9.4 COMMON GATEWAY INTERFACE (CGI) SCRIPTS AND APPLICATION PROGRAMMING INTERFACE (API) PROGRAMS ..9-3

9.5 AUTHENTICATION ..9-3

9.6 WEB BROWSER ..9-3

9.7 ACTIVE CONTENT AND COOKIES ..9-4

9.7.1 Java Applet ..9-4

9.7.2 ActiveX ...9-5

9.7.3 Cookies ..9-5

10. REMOTE ACCESS SERVERS (RAS) AND MODEM POOL ...10-1
11. DOMAIN NAME SYSTEM (DNS) SERVERS ..11-1

12. INTRUSION DETECTION AND MONITORING ..12-1

13. OTHER SECURITY CONSIDERATIONS ..13-1
 13.1 PHYSICAL SECURITY ..13-1
 13.2 LOGGING ..13-1
 13.3 BACKUP AND RECOVERY ..13-2
 13.4 COMPUTER VIRUS AND MALICIOUS CODE PROTECTION ..13-2
 13.5 OPERATING SYSTEM SECURITY ..13-2
 13.6 SECURITY RISK ASSESSMENT AND AUDIT...13-3
 13.7 SYSTEM MANAGEMENT AND OPERATIONS ...13-4

APPENDIX A RECOMMENDED PROTECTION CHECKLIST FOR INTERNET
GATEWAY SECURITY ..A-1
1. PURPOSE

This document provides general guidelines on Internet gateway security. These guidelines represent what are regarded as best practices to maintain security risks at an acceptable level under the Internet open platform. It is intended for staff who are involved in the operational and technical functions of Internet gateway services.

As the materials included in this document are general in nature and are prepared irrespective of computer platforms, readers should consider and select those that are applicable to their own environment.
2. **SCOPE**

This document addresses security considerations in the following major areas:

- Internet Gateway Overview
- Firewalls
- Routers
- Mail Gateway Security
- Web Security
- Remote Access Servers (RAS) and Modem Pool
- Domain Name System (DNS) Servers
- Intrusion Detection and Monitoring
- Other Security Considerations

The purpose of this document is to provide information on some best practices on Internet gateways. It should be used in conjunction with established security regulations, IT security policy, guidelines and procedures.
2.1 IT SECURITY DOCUMENT OVERVIEW

The following diagram describes the relationship of various IT security documents within the Government:

![Diagram of IT Security Documents]

IT Security Documents
The purpose and overview of the five core IT security documents are described below:

<table>
<thead>
<tr>
<th>Document Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline IT Security Policy</td>
<td>A top-level directive statement that sets the minimum standards of a security specification for all bureaux / departments (B/Ds). It states what aspects are of paramount importance to a B/D. Thus, the Baseline IT Security Policy can be treated as basic rules which must be observed as mandatory while there can still be other desirable measures to enhance the security.</td>
</tr>
<tr>
<td>IT Security Guidelines</td>
<td>Introduces general concepts relating to IT security and elaborates interpretations on the Baseline IT Security Policy. It also provides readers some guidelines and considerations in defining security requirements.</td>
</tr>
<tr>
<td>Internet Gateway Security Guidelines</td>
<td>Acts as a supplementary document to IT Security Guidelines to provide general guidelines on Internet gateway security. These guidelines represent what are regarded as best practices to maintain security risks at an acceptable level under the Internet open platform. It is intended for staff who are involved in the operational and technical functions of Internet gateway services.</td>
</tr>
<tr>
<td>Security Risk Assessment and Audit Guidelines</td>
<td>Acts as a supplementary document to IT Security Guidelines to give an introduction to a generic model for IT security risk assessment and security audit. This document does not focus on how to conduct a security risk assessment or audit. Rather, it provides a reference model to facilitate the alignment on the coverage, methodology, and deliverables of the services to be provided by independent security consultants or auditors.</td>
</tr>
<tr>
<td>Information Security Incident Handling Guidelines</td>
<td>Acts as a supplementary document to IT Security Guidelines to provide a reference for the management, administration and other technical and operational staff to facilitate the development of security incident handling plan, and to be used for preparation for, detection of, and responding to information security incidents.</td>
</tr>
</tbody>
</table>
3. REFERENCE

3.1 STANDARDS AND GUIDELINES

a) “IT Security Guidelines [G3]”, Government of Hong Kong Special Administrative Region.

3.2 OTHER REFERENCES

http://www.ietf.org/rfc/rfc2196.txt
http://www.w3.org/Security/Faq/www-security-faq.html
c) “Guidelines on Firewalls and Firewall Policy”, SP 800-41, NIST.
d) "Email Bombing and Spamming", Software Engineering Institute.
http://www.cert.org/tech_tips/email_bombing_spamming.html
e) "Good Practices Guide for Deploying DNSSEC", ENISA.
f) "Guide to Intrusion Detection and Prevention Systems", SP 800-94, NIST.
4. DEFINITIONS AND CONVENTIONS

4.1 DEFINITIONS

N/A

4.2 CONVENTIONS

N/A
INTERNET GATEWAY SECURITY GUIDELINES

INTERNET GATEWAY OVERVIEW

Internet gateway is an interface with dedicated Internet connection. It provides a point of connection with the Internet, no matter whether the interface has any connection with the internal departmental or government network. A secure Internet gateway can tighten the control and establish a more cost-effective and secure operation environment.

Because of the openness of the Internet and the rapid growth of complex network services and applications, the lack of security protection on the gateway may leave the internal network vulnerable to attacks. Hence, an Internet gateway should be properly configured with appropriate security measures to protect it from attacks.

5.1 INTERCONNECTION OF NETWORKS

Setting up an Internet gateway often interconnects with internal networks in order to allow them to gain access to the service. However, considerable care should be exercised to ensure that interconnecting the network will not degrade or weaken the existing security level to an unacceptable level, or compromise the security of information processed. Hence, the connecting parties have to:

- Maintain their own specific security defences on their networks, hosts and systems.
- Maintain their own security policies and guidelines, and these policies and guidelines should be aligned with those on the Internet gateway.
- Set up stringent logical access controls to the Internet gateway.
- Establish security incidents handling and reporting procedures for the Internet access and services.
- Advise and train users to observe and follow the related security policy, guidelines and procedures.

5.2 RECOMMENDED SECURITY PROTECTION

It is recommended that a secure Internet gateway, merely offering Internet access services, should be equipped with the following security functions:

- Firewall (for access control).
- Packet-filtering router (for routing traffic and filtering packet).
- Intrusion detection system (IDS) or intrusion prevention system (IPS) (for logging, monitoring and detecting attacks).
- Protection against computer virus or malicious code (for detecting computer virus or malicious code, and preventing information systems from infection).
Figure 1 An Internet Gateway with Recommended Security Protection

Illustrated above is the recommended security protection required for an Internet gateway, which provides a channel for access from internet network to the Internet without hosting any web servers or mail servers. The de-militarised zone (DMZ) is the area where security measures are placed.

A firewall host is deployed to filter out unauthorised or malicious traffic. It should be noted that a firewall is not the totality of security solutions. There are a number of things that a firewall cannot protect against, including but not limited to:

- Denial of service attacks and assure data integrity
- Attacks from unwitting users
- Attacks from computer virus or malicious code

That is why other security functions (such as intrusion detection and monitoring, and computer virus scanning) should be used together. However, it is observed that the boundary between firewall and other security measures is becoming blurred as firewall manufacturers continuously incorporate additional features, e.g. Virtual Private Network (VPN), encryption, etc. to firewall.

Two packet-filtering routers (one external and one internal) are used to filter and route the selected traffic to the firewall from either external side or internal network. In order to connect to the Internet, the external packet-filtering router should be set up. The internal packet-filtering router is used to separate the DMZ segment (which will be explained in later sub-section) from the internal network. Unlike firewalls, these routers are normally considered as network devices with value-added security features rather than as security products.
The intrusion detection and monitoring stated above refers to any means, such as tools or procedures, that can provide such functions, but may not be necessary a physical device. The use of IDS/IPS tools can help to automate, speed up and facilitate the intrusion detection and monitoring process. The actual use of such tools is subject to B/D’s own requirements but the gateway should accommodate with at least a procedure-based mechanism to detect and monitor intrusions.

Apart from that, a set of security policy and procedures should be developed for controlling and monitoring the Internet gateway. There is a need to perform security audit regularly, after major changes or prior to implementation to ensure that the Internet gateway is set up properly in accordance with the security policy. Even if there is no internal network connection, it would still be better to have the above recommended security protection.

Appendix A shows a checklist for some of the recommended protections.

5.3 INTERNET GATEWAY ARCHITECTURE SAMPLE

Illustrated below is a sample logical network diagram for an Internet gateway. B/Ds may revise the network architecture according to their own requirements, services offered and existing network structure. The relative position of network components may need to be altered.

![A Sample Internet Gateway with a DMZ](image-url)
A firewall system, intrusion detection mechanism and computer virus scanning tools should be maintained to provide security protection for Internet access service. Depending on the services to be provided, the following network devices may be deployed with:

- Authentication servers (for user identification and access control)
- Remote Access Server (RAS) and modem pools (for remote dial-in and access)
- Domain Name System (DNS) servers (for host name and address mapping)
- Simple Mail Transfer Protocol (SMTP) gateway and mail servers (for Internet email)
- Web servers (for information publishing)
- Proxy servers (for caching, network address hiding, access control)

Nonetheless, some security guidelines on the above components will be explained in later sections with focus on their security measures.

This architecture can separate the internal network from the external one, and can hide the information about the internal network. Separate segments may be assigned within the DMZ for better access control and protection.

In fact, Internet gateway architecture for different services may require specific tailoring depending on many factors such as network infrastructure, services provided, performance, mode of operations, cost and so on.

5.3.1 Web Servers

- Separate web servers should be used to restrict access when providing different information to internal and external users.
- Web servers can be placed inside or outside the internal network. Web servers, which are placed inside the internal network, are normally used for providing information to internal users, while web servers outside the internal network are used for disseminating information to the public or external users. All outside web servers need to be connected to the firewall in the DMZ with a separate network interface.
- A dedicated host should be assigned for running a web server, a mail server or any critical service separately. In case of being compromised, this can reduce the impact to other services.

5.3.2 Domain Name System (DNS) Servers

- All host names and addresses stored in an external DNS server are supposed to be exposed to public. Hence, the external DNS server should not hold information about the internal network. The external DNS server may be hosted at the Internet Service Provider (ISP).
- A separate internal DNS server could be set up and placed in the internal network if internal domain information is needed, but the information should not be disclosed to the Internet.
5.3.3 Intrusion Detection and Monitoring

As mentioned above, the intrusion detection and monitoring function can be performed either manually or automatically by using some intrusion detection and monitoring tools. If performed manually, system and application logs should be properly kept, reviewed and analysed for all critical components. Reviewing and monitoring procedures should be properly established and followed. If performed automatically, network IDS or IPS tools can be used.

An IDS passively monitors traffic by listening to and examining the packets within a network. Signatures of known attack attempts will be compared against traffic pattern to trigger an alert.

An IPS provides a more proactive approach beyond an IDS because it can be configured to stop the attack from damaging or retrieving data from the target victim upon detection of an attack pattern. Similar to a firewall, an IPS can intercept and forward packets and can thus block attacks in real-time.

These tools reside in the networks or hosts to detect any suspicious activities, and monitor the network traffic or system activities. Some suggestions are listed as follows:

- **IDS/IPS should be placed in the DMZ to detect external attacks.** Additional IDS/IPS can be placed in the internal network to detect internal attacks if required.
- **The operation of the IDS/IPS should be as stealth as possible.** It should be hidden and protected by the firewall system to protect it from attacks.
- **Do not solely rely on IDS/IPS to protect the network.** IDS/IPS are only real-time detection tools to alert users on abnormal or suspicious activities. More importantly, the network should be properly configured with all necessary security protection mechanisms. The whole network should be closely monitored and regularly reviewed so that security loopholes or misconfiguration can be identified promptly.

5.3.4 Firewalls

Depending on the security requirements, the use of two or more firewalls or routers in serial helps to provide an additional level of defence. For example, two firewalls in serial (one internally connected with the internal router and one externally connected with the external router) may be required to provide different protections. If there is one RAS connected to the DMZ and placed between the internal and external firewall, the external firewall may aim at blocking malicious traffic from the Internet while the internal one may aim at blocking malicious traffic from the internal network users and the remote access users connected to RAS.

If multiple firewalls are used in parallel for load balancing or performance reasons, the configuration of each firewall should be aligned.
5.3.5 Protection against Computer Virus and Malicious Code

- A separate host machine may be set up together with the firewall to check for computer viruses and malicious codes in all incoming traffic when going through the firewall. This can centralise the control in updating signatures for computer virus and malicious code, and prevent the computer virus or malicious codes from entering into the web or mail servers.
- Computer virus or malicious code detection measure may also be installed in other positions, such as incorporated with the mail server or the web server to specifically protect individual servers.
- The decision of where to apply computer virus or malicious code detection measure depends on many factors such as network architecture, performance, system or data to be protected and the required protection level. In most cases, mail server should be accommodated with computer virus or malicious code detection measure as usually computer virus/malicious codes come in as email attachments.

5.3.6 Remote Access Servers (RAS) and Modem Pool

A RAS is a special-purpose networking device designed to support remote or mobile computing.

- Authorised users may like to have a dial-in capability, i.e. to access from remote locations without availability of Internet access. This capability may introduce vulnerabilities, and thus it should be implemented and managed properly.
- A central modem pool is recommended to be used for ease and effectiveness of management and control.
- Authentication mechanism should be used to control remote or dial-in access.

5.3.7 Proxy Servers

A proxy server is a server running simple programs or processes examining packets passed through. It is normally treated as performance enhancing devices for internal network users with value-added security service. It is used as a middleman in which the communications between two sides (e.g. a client and a server) are mediated and destined. That is, each side is communicating with the proxy server instead of directly connecting with the other side. Proxy servers should be configured to provide authorised proxy services and restrict user access to unauthorised destinations. Proxy servers can provide additional support such as caching of recently accessed web pages, access control, logging, content filtering or even address hiding.

Figure 2 above shows a proxy server, which serves to control internal users’ access to the Internet.
Some firewalls can enforce proxy servers for typical services such as TELNET, File Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP) and SMTP, so that no communication can go through the firewall without application level mediation.

5.3.8 Authentication Servers

Firewall and proxy servers can perform some kinds of user authentication functions. It can also consider the use of a central database, known as "authentication server" to centrally store all the necessary information for authenticating and authorising users such as user passwords and access privileges. In addition, these authentication servers can support stronger authentication schemes such as the use of tokens and smart cards, which may not be able to be supported by proxies.

For example, Remote Authentication Dial-In User Service (RADIUS) and Terminal Access Controller Access Control System Plus (TACACS+) are common schemes used for remote authentication. Referring to Figure 2, an authentication server can be used to authenticate remote dial-in users before they are granted access rights to the network.

- The information stored in the authentication database should be encrypted and be well protected from unauthorised access or modification.
- A single dedicated machine, which is securely protected, should be used.
- The server should be properly configured to log administrative transactions, usage accounting information and authentication transactions such as failed login attempts.
- If more than one authentication servers are used for resilience, make sure that the information stored in the authentication databases is propagated to all other replicas.
- System log files should be reviewed periodically to detect any unauthorised account creation or privilege modification.

A Risk Assessment Reference Framework for Electronic Authentication has been promulgated, which aims to introduce a consistent approach for B/Ds’ reference in deciding the appropriate authentication method for their e-government services. The framework is to provide citizens/staff with a consistent experience and interface when transacting electronically with the Government for services of similar authentication requirements. B/Ds should follow the framework as far as possible in determining and implementing the electronic authentication requirements of their e-government services.
6. **FIREWALLS**

A firewall can be considered as a security measure for protecting an organisation's resources against intruders. It is an important component of a security infrastructure. It should be reminded that the design and setup of a firewall requires thorough understanding about the firewall features, functions, capabilities and limitations as well as the threats and vulnerabilities associated with the Internet.

A firewall should be installed at all network junctions between internal network (e.g. department's network), external networks (e.g. Internet), and any network points that the flow of data is required to be examined, restricted, filtered or redirected.

There are different types of firewall available in the market. Upon selection of a firewall product, the following core criteria should be considered:

- Product features
- Performance / throughput
- Interoperability with existing network
- Reliability
- Resilience
- Ease of management
- Vendor support
- Product certification (e.g. Common Criteria Evaluation Assurance Level)
- Support to authentication services (e.g. RADIUS)
- System capacity and scalability
- Logging
- Price
- Customer reference
- Skill sets availability
- Security requirements

Most importantly, the firewall should be properly configured and administered.

6.1 **FIREWALL CONFIGURATION**

Firewall should be properly configured to filter traffic, control access and perform content filtering. Poor or incorrect configuration of a firewall may result in a false sense of security, which is more dangerous than without a firewall.

Listed below are some considerations in firewall configuration for reference:
• All incoming and outgoing Internet traffic should be forced to go through the firewall, which is the sole means of entry from and exit to the Internet.
• Do start with a conservative firewall security policy, i.e. "Deny all services except those explicitly permitted." It is recommended not to blindly follow the default settings in the firewall.
• All services allowed to go through the firewall should be carefully planned and evaluated.
• The firewall can be configured to use network address translation (NAT) to hide internal network information such as IP addresses. In an IPv6 environment, B/Ds may allow end-to-end connectivity to the Internet if there are operational necessities. In doing so, proper security measures, such as using temporary IP addresses to inhibit user activities profiling, should be considered.
• The firewall should be configured to enable content filtering, and computer virus and malicious code scanning capabilities.
• The firewall should be properly configured for IP level filtering.
• The firewall should be configured to block unused ports and filter unnecessary traffic, e.g. unnecessary incoming or outgoing Internet Control Message Protocol (ICMP) traffic.
• The firewall itself should be physically secured.
• The firewall policy established should be flexible for future growth and adaptable to changes on security requirements.
• Correctly set and assign file permissions on firewall. Permissions on system files should be as restrictive as possible.
• A firewall should be thoroughly tested, and its configuration should be properly verified before going production.
• A firewall test is necessary after major change or upgrade to the firewall.
• If necessary, FTP or TELNET originated within the internal departmental network may be allowed to go through the firewall to the Internet.
• All software and OS installed on the firewall should be maintained with proper version by periodically revisiting the vendor sources and upgrading with patches and bug fixes.
• Real-time alerts should be set up for emergency incidents.

6.2 FIREWALL ADMINISTRATION

• Firewall configuration, administration and operational procedures should always be well documented.
• Configuration of multiple firewalls used in parallel should be identical.
• Integrity checking of the configuration files of firewall by checksums should be performed whenever applicable.
• Log recording and reviewing for firewall should be done regularly.
• Backups of system and configuration files for firewall should be taken regularly.
• Proper maintenance of user accounts is important. Only the firewall administrator and backup administrators will be given user accounts on the firewall. Tight access control should be enforced for authorised users to perform necessary functions only.

• Ongoing training of firewall administrators is essential for firewall maintenance and management.

• At least two firewall administrators (one primary and one secondary) should be designated for administrating the firewall.

• Establish an effective communication channel between LAN administrators and firewall administrators.

• Firewall audit has to be conducted on a regular basis. Perform periodic scans and checks of host systems to detect common vulnerabilities and faults in configuration.
7. **ROUTERS**

Routers are used to connect two or more networks. They can filter traffic and restrict access to servers or network components, similar to the application proxies.

The following guidelines should be observed and followed when configuring and managing routers in the network:

- Similar to firewall, routers should be properly configured to deny all traffic by default, and to allow only permitted traffic to go through. Source routing should be disabled unless for troubleshooting.
- Logging, backup and other administrative tasks should be properly performed, similar to those for firewall.
- Testing should be done thoroughly before live implementation.
- If routers are used with firewalls, they should be consistent with the firewall policy.
8. MAIL GATEWAY SECURITY

To set up a secure mail gateway, the following guidelines should be observed and followed.

8.1 MAIL SERVER DESIGN AND CONFIGURATION

- A mail server should be run behind a firewall system, which helps to restrict the access to the mail server and provide various security protections.
- Properly configure firewalls or routers to block unwanted traffic such as traffic from particular IP addresses of known spammers, into the mail server or gateway.
- The email system should not disclose names or IP addresses of internal network or systems.
- The email system should be properly configured to avoid disclosing internal systems or configurations information in email headers.
- Directories of internal email addresses should not be made publicly accessible.
- Mail gateway should be capable for logging all emails exchanges for auditing. It should provide information such as how, when and where an email is entered or left.
- If there are email bombs or spam emails, identify the source or origin of emails and configure the router or firewall to block or drop the emails.
- Mail relay functions for non-authorised users should be disabled.

8.2 EMAIL BOMBING, SPAMMING AND SPOOFING

Email bombing refers to repeatedly sending emails to fill up a mail gateway or a mailbox. Email spamming refers to the sending of unwanted email to users. Both email bombing or spamming resulted in flooding the Internet with unwanted junk emails. Email bombing/spamming attackers usually hijack other mail servers, and use them to send the emails.

Email spoofing refers to emails in which the sender or other parts of the email header are manipulated to appear as from a different user or source with impersonated identity. Email bombing/spamming may be combined with email spoofing, making it more difficult to determine who actually sent the email.

If mail servers are not properly configured, they may suffer from these kind of email attacks. The mail system may crash, overload or even lose internal data because all available resources are plundered by the spammers. The cost of recovery to normal service may also be high.
Examples of symptoms of email attacks are:

- Denial of service such as disk full or system shut down.
- Large number of incoming/outgoing emails from same originator in a very short period of time.
- Large number of incoming/outgoing emails from invalid source address or to non deliverable address.
- Incoming/outgoing emails from an unknown source.
- Emails claiming to be from the administrator requesting users to send a copy of their passwords or other sensitive information.
- Emails requesting users to change their passwords to a specified value or string.
- Emails redirecting users to fraudulent website that appears to be a legitimate organisation, for the purpose of gaining personal identity and private information, such as credit card information.

Listed below are some points for protecting from email bombing, spamming and spoofing:

- Remove unused mail daemons such as Sendmail if not used. Keep mail gateway software up-to-date when used.
- Enable logging to record origin or header information of the spoofed email. Use IDS/IPS to detect any suspicious activities such as sudden increase of incoming/outgoing emails from the same originator to assist the detection/prevention of mail bombing.
- Properly configure the firewall and router to allow incoming SMTP connections to a dedicated email gateway or server only to centralise the logging and traffic control.
- Mail relaying to and from unauthorised users or non-existence addresses should be blocked. For example, a mail server should only allow mail relay for some specified internal IP addresses or authorised internal users, but not external ones.
- Mail daemons or mail gateway software, which can filter out invalid messages, should be properly set up to remove junk mails or invalid messages such as from unauthorised domains or with invalid email headers.
- Set a limit on the maximum file size of an email, or on the maximum number of email messages that can be transmitted within a certain period of time. This can avoid flooding to eat up all available network resources or disk space.
- Update spammer list regularly.
- Set up spam blocking system before mail server to block out unwanted emails. Such spam blocking system acts as an email gateway to filter out spam emails before entering the mail server based on various criteria, such as email header, content, spam blacklist, spam whitelist, and reverse DNS lookup.
8.3 ACCESS CONTROL

- Only authorised users should be allowed to use the mailing service.
- Use authentication schemes such as passwords or digital signatures to authenticate the emails, and ensure their origin and integrity during transmission.
- The number of users allowed to access the email server should be limited.
- Store emails in secure repository with proper access controls. Care should be taken to maintain the privacy of emails.
9. WEB SECURITY

Web security is a set of procedures, practices and technologies to protect web servers, web users and internal network. The web server including its components such as the web server's operating system (OS), the network, application programs/software, and all resided information are subject to attacks from the Internet.

Since the web server is facing the Internet, strong host and network security protection should be employed. The security guidelines on web security described in this section should be observed and followed.

9.1 WEB SERVER CONFIGURATION AND ADMINISTRATION

Web server software is an application running on a host system, often facing the Internet, to provide information or web services to users. The below designs and configurations are important for deploying a secure web server.

- The web server should be configured not to start up any SMTP service allowing external users to relay mails through the web server.
- All server software and application should be running with the least privilege, especially it should not be running with 'administrator', 'superuser' or 'root' privilege.
- Proper access permissions should be set for directories, files and web pages in the web server.
- All unnecessary network services, applications, or internet protocols should not be running on the web server by default.
- Turn off any potentially dangerous server-side executable codes such as cookies and applets as far as possible.
- If applicable, dedicate a single working directory for processes of web server to create/manage working files during execution. Ensure to have the working files removed after the processes finished.
- The web server administration tools should only be accessed by authorised administrators through authentication systems with log records. Vital configuration files should only be updated by the administrators.
- The integrity and availability of the websites should be closely monitored daily. IDS/IPS should be used to notify administrators for unauthorised modifications or access.
- Disable all unused accounts, including user, service and default accounts.
- Remove all default or sample files from the web server.
- Restrict web crawling for the contents which are not supposed to be searched or archived by public search engines.
- The passwords of administrative tools should be changed periodically and should not be repeated. Never use the default passwords for these administration tools.
9.2 ACCESS CONTROL

- To avoid IP spoofing attacks, a combination of IP address restriction and user authentication should be used.
- No directories or data files should be accessed or updated by anonymous or unauthorised users.
- Access should be granted only to registered users. Limit the numbers of login accounts available in the server machine. Review and delete inactive users periodically.
- All unnecessary accounts should be disabled, especially those guest accounts.
- Only appropriate administration processes / accounts should be allowed to access the logs.
- Sensitive information stored on an external web server should be protected with strong encryption and should require authentication for access.

9.3 WEB CONTENT MANAGEMENT

- All websites and pages should be thoroughly tested and checked before production or after major changes.
- Control should be made such that only delegated and authorised persons could have rights for posting and updating web pages to the production environment.
- If a web server has to be shared among different sections or even departments, different web content directories or resources should be granted with access control to restrict the access, execution and storage of these web applications.
- No links to internal files, which are stored outside the assigned web directories, should be set in the web applications.
- No administration privileges on the OS and web server should be granted to web content developers.
- Establish web content management procedures for posting or updating web pages and applications to the web server.
- For web forms or applications that accept user input, all input data should be properly checked, validated and sanitised before passing to the backend application. Any unexpected input, e.g. overly long input, incorrect data type, unexpected negative values or date range, unexpected characters such as those rejected by the application for bounding character string input etc., should be handled properly and would not become a means for attacking the application.
- Unnecessary contents such as platform information in server banners, help database, online software manuals, and default or sample files should be removed from production servers to avoid disclosure of internal system information.
9.4 COMMON GATEWAY INTERFACE (CGI) SCRIPTS AND APPLICATION PROGRAMMING INTERFACE (API) PROGRAMS

Usually web servers can be extended using Common Gateway Interface (CGI) scripts and Application Programming Interfaces (APIs) to improve their capabilities. Default CGI scripts supplied with web servers may provide unintentional "back door" access to web content. Such scripts may leak internal information about the host system and may be vulnerable to attacks. Moreover, CGI scripts often accept user input data.

The following items should be observed and followed:

- CGI scripts and API programs should be properly designed, tested and examined to ensure that they only perform the desired function. No default or custom CGI scripts and APIs should be remained on the server unless they are thoroughly tested and verified.
- These programs should be run and stored in a restricted environment such as in a designated directory, to limit the access and facilitate the maintenance.
- These programs should be given executable permissions only, but not readable or writable permissions. Use of system resources should be limited including the CPU time, timeout period and disk utilisation. Access to other data files or information should be properly restricted.
- Programs should not be resided in the default directories of CGI scripts and API programs such as compilers, interpreters, shells and scripting engines. They should be located safely in appropriate directories and should be removed completely from the web server when not required.
- User data input to these CGI scripts and API programs should be properly checked, validated and sanitised before passing to the server software or the underlying OS to prevent them from triggering command-line function.

9.5 AUTHENTICATION

- Wherever applicable, use strong authentication schemes such as digital certificates, smart cards and tokens for remote administration control and authentication of critical applications, servers and clients.
- Use encrypted connection such as Hypertext Transfer Protocol Secure (HTTPS) for transmission of sensitive information.

9.6 WEB BROWSER

Web browsers should be properly configured. Some suggestions are listed below for reference.

- Access to the Internet should be made through an authorised communication channel e.g. the Central Internet Gateway.
• Turn off any active content enabling options, e.g. Java, JavaScript and ActiveX, in the email application or browser, except when communicating with a trusted source.
• Scan any downloaded files for computer viruses and malicious codes before opening or executing them.
• Use up-to-date browsers and apply latest security patches.
• Disable password auto-complete / remembering feature.
• Enable pop-up blocking feature, except when communicating with trusted sites.
• Regularly remove cache files or temporary files of browsers to protect data privacy.
• Disable automatic installation of plug-ins, add-ons or software.

9.7 ACTIVE CONTENT AND COOKIES

Active content enables information servers to tailor their presentation script which is to be executed in the client side browser. Examples are Java applet and ActiveX.

Cookies are mechanisms used by the server side to maintain the state information of a client's browser when using stateless connection protocol such as HTTP.

9.7.1 Java Applet

Java applet is a program that is usually embedded in a web page. Client browsers may automatically download Java applets for execution. Nevertheless, Java system restricts its applets to a set of safe actions known as “sandboxing” making them difficult to damage the file system or the boot sector of a client computer. When developing Java applets, developers should design and restrict access of Java applets to designated directories, files and OS properties.

The following areas should also be considered at the client side where Java applets will be running:

• Tighten the security controls on Java's compilers, interpreters and generators. Remove these compilers, interpreters and generators whenever not required in the production environment.
• Keep up-to-date information about security vulnerabilities of Java system and Java applets, and apply latest patches.
• Select “Disable Java applet” on the browser to prohibit running of Java applet if it is not required.
9.7.2 ActiveX

ActiveX is a software control which can be used to create distributed applications working over the Internet through web browsers. ActiveX controls are designed to allow web browsers to download and execute them. ActiveX controls are composed and embedded in web pages, but there are no restrictions on what they can do. For example, ActiveX is allowed to reside on a system, or even wipe out the data or write to the local hard disk without users’ discretion. Moreover, the browser is not capable of recording down what actions the ActiveX controls have been performed on the client machine.

ActiveX security relies on user judgement. A software author can apply digital signature technology, which is certified by a certification authority, onto an ActiveX control. In this way, the client can verify the signature before deciding to either accept or reject the control based on the author’s identity. Bearing in mind that digital signatures only tell who wrote the ActiveX controls but could not help to decide whether they are trusted or not. One should always carefully consider and accept only those controls from trusted sources, or one should evaluate and disable “ActiveX controls and plug-ins” in the browser settings to prohibit running of unnecessary ActiveX on the system.

9.7.3 Cookies

Cookies are mechanisms used by server side to store and retrieve information from client side. They are objects, which provide state information of the client to the server such as descriptions of accessed URLs, client user's email addresses and sensitive information. An attacker can masquerade as the server to retrieve cookies from the client.

System developers should be aware that it is inappropriate for cookies to keep too much private information. Plaintext user name and passwords should never be kept in cookies. Apply encryption to the entire cookies if authentication information is needed to be stored in the cookies. System designers can also include some control information such as an expiration date and time to restrict the valid period of the cookies and hence, reduce its potential damage.
10. REMOTE ACCESS SERVERS (RAS) AND MODEM POOL

Remote access refers to the use of network resources from a remote location, which is not directly attached to the network. There are different ways of remote access, such as using a pair of modems and a communication link to connect the remote user's PC with the network. Hence, there are three areas need to be protected: the remote user, the network resources and the communication link.

- Clearly identify users who would be granted with remote access privileges and what types of services could be provided to them.
- Only authorised users should be allowed to gain remote access to the network with proper authentication and logging.
- Properly configure firewall system to restrict remote access.
- RAS and modem pool should be physically secured.
- Connection to RAS should be logged to record the login session initiation and termination, the connection starting and ending time, the addition, updates or deletion of user accounts on the RAS and etc.
- Encryption should be used to protect user credentials or data during transmission over these links.
- Dial-in services can also be flooded by repeatedly dialling. The setting of time-outs counters or dial-in time limitations can be used to reduce the chance of being flooded.
11. DOMAIN NAME SYSTEM (DNS) SERVERS

A Domain Name System (DNS) server provides support for mapping and translation between domain names and IP addresses. The DNS server can provide information such as the IP addresses lists of hosts in a given domain, IP address-to-hostname mapping, and email address.

To protect the DNS servers, the following guidelines should be observed and followed:

- Use the latest DNS server software or service pack.
- Apply security protection mechanisms on the DNS server such as access control on DNS database files and use of strong encryption system.
- Maintain a record of IP addresses assignment information such as host location and host information. This record acts as an inventory list for backup, verification and audit in case the DNS server is compromised.

Domain Name System Security Extensions (DNSSEC) is designed to protect DNS resolvers (clients) from forged DNS data, such as that created by DNS cache poisoning. All answers in DNSSEC are digitally signed. By checking the digital signature, a DNS resolver is able to check if the information is identical (correct and complete) to the information on the authoritative DNS server. DNSSEC is progressively rolled out to add security to the existing DNS infrastructure. B/Ds should plan and prepare for DNSSEC deployment.
12. INTRUSION DETECTION AND MONITORING

Maintaining Internet gateway security requires ongoing and comprehensive system operation, support and surveillance to oversee the prevention, detection, response and escalation of any irregular, abnormal or suspicious activities or incidents. This can be achieved by proper manual procedures such as reviewing and analysing log or statistics, and testing the incident handling procedures.

If possible, IDS/IPS tools should be installed and used at strategic locations to collect and examine information continuously for suspicious activity. Both network based and host based IDS/IPS tools could be used. The former type examines network packets in the network while the latter one monitors the system configuration and application activities on a single host system.

Improper configuration and use of these tools may disclose information to attackers and result in a false sense of security.

- IDS/IPS tools should be used to identify suspicious activities on both the network and the host machines, in particular the web server and the mail server.
- Automatic generation of notifications or alerts by electronic messages or mobile paging should be set up to warn system administrators when symptoms of attacks are detected.
- If applicable, systems or functions capable of reacting to suspicious network activity should be implemented to disconnect or block these connections in the first place and record them for subsequent analysis.
- These tools should be properly tested and verified before going operation.
- The use, administration and management of these tools should be properly controlled and restricted.
- Firewall system should be properly configured to protect and hide such tools as far as possible.
- The attack signature files should be kept up-to-date.
- Proper operating, administrative and monitoring procedures should be established for using these tools.
13. OTHER SECURITY CONSIDERATIONS

Apart from the above specific network components, there are also some security issues that should be concerned.

IT Security Guidelines (G3) provides more detailed information about the general security concerns. Some related materials are discussed in the following sections.

13.1 PHYSICAL SECURITY

- All gateway components should be physically secured and be placed in a restricted area.
- The computer room with these equipments placed should be well equipped to protect against physical or natural disasters.
- Lockable racks should be used to store these components.
- Regular monitor and review on the current physical protection e.g. examine site entrance or access logs, check cables for unauthorised taps, check door locks of racks and any sticking labels.
- Remove and erase all storage media before disposal, especially those containing system configuration.

13.2 LOGGING

- Enable logging functions wherever applicable in firewall, router, OS, web server and mail server.
- Keep logs such as the error logs, system logs, access logs, web server and mail server logs with adequate storage capacity available.
- Endeavor to log information such as invalid account login attempts, account misuse in websites, illegal or unauthorised attempts to websites, administrative and configuration updates, or specific information of requests, including requestor's IP address, host name, URL and names of files accessed.
- Logs should be reviewed regularly and kept for at least a week in a secure place. Write-once device such as optical disk may be used to record those log files.
- Logs showing intrusions and attacks should be kept properly for investigation and record.
- Consideration on privacy should be made when designing the types and details of information to be logged.
13.3 BACKUP AND RECOVERY

- Formal backup and recovery procedures should be established and well documented.
- All gateway components' configuration, log files, system files, programs, data and other system information should be backup regularly and whenever there is configuration change. Encryption may be applied to the backup if necessary.
- Backup copies should be kept in a secure place. Two backup copies for system configuration are preferably to be kept with one on-site and one off-site.

13.4 COMPUTER VIRUS AND MALICIOUS CODE PROTECTION

- Enable anti-virus protection or malicious code detection to check all incoming Internet traffic, and automatically clean for computer viruses and malicious codes.
- The gateway should be configured to stop traffic with malicious content, quarantine / drop them, and create audit logs for future investigation.
- Virus signature and malicious code definition should be updated regularly. The update should be configured as automatic and update frequency should be at least on daily basis.
- If automatic update is not possible (e.g. mobile devices which are often not attached to networks), update should be done manually at least once a week.
- Users should also note that from time to time, there could be ad-hoc and serious virus outbreaks. If so, users should follow the instructions and immediately update with the latest virus signature and malicious code definition in order to protect against virus outbreak.
- Regularly perform computer virus and malicious code scanning for the host machine where the information servers are installed.

13.5 OPERATING SYSTEM SECURITY

Operating system (OS), where the network application software are running on, should be carefully selected with respect to the security requirements. It is often the underlying OS that has vulnerabilities or security holes, rather than the application software.

A secure OS platform should be chosen especially for the firewall and critical servers. It is preferable to select those OSs which can provide the following features:

- Multiple simultaneous processes
- Secure file access permissions and controls
- Accountability and auditability of users and system actions such as detailed event logs
- Identification and authentication of all users on the system
- Resources isolations such as controlling reuse of system objects e.g. deleted files, allocated memory
Different OSs have different ways to secure their configuration. Listed below are some examples for general reference.

- Remove or disable all unnecessary services or processes, especially those unused but default running services and processes.
- Remove unnecessary default accounts if possible, otherwise change all default accounts with strong passwords.
- The number of privileged processes running should be reduced to the minimum. The assignment of privileges should be carefully handled.
- Default file permissions and privileges should be reviewed periodically, and set to restrictive values.
- Use a strong password for the system administrator account. The password should be regularly changed.
- Standardise and minimise the number of OS versions and software to make installation and maintenance more manageable.
- Install OS upgrades regularly and apply latest OS patches, especially those related to security issues.

13.6 SECURITY RISK ASSESSMENT AND AUDIT

Security risk assessment should be performed periodically, after major changes and prior to implementation. It is required to be performed at least once every two years. It targets at reviewing the existing security measures and identifying for any potential security vulnerabilities.

A security audit can be a general review on existing security policies or a technical review by the use of various security assessment tools that should be used with considerable care to scan the host systems and the networks for security vulnerabilities. It targets at ensuring that the current protection mechanism complies with the existing security policy.

- Audit scope and objectives should be clearly defined to ensure that all target network components are included.
- Technical audit review should be performed prior to implementation. Host based scanning is necessary for each host in the gateway, especially for the running services and file permissions.
- Firewall policy should be thoroughly audited for its rules and allowed services.
- Password mechanisms should be checked and assured for effectiveness.
- After audit, testing results and data should be removed from the network components and stored securely.
- Access should be controlled to prevent unauthorised persons from accessing the scanning tools.
- Audit recommendations should be followed up as soon as possible.
13.7 SYSTEM MANAGEMENT AND OPERATIONS

- User accounts should be properly managed and maintained.
- No users or staff are allowed to install or run web servers or mail servers for Internet access, without obtaining formal approval from the Head of B/Ds.
- All roles and responsibilities of staff performing system administration and management should be clearly defined, assigned and documented.
- Procedures should be well established and followed for the Internet gateway such as change and configuration management control procedures especially for firewalls, backup and recovery procedure, web content management procedure and other related ones.
- Programs or software installed and run on the hosts should be of secured modes to prevent unintended alteration, and be applied with latest patches or updates.
- Administration for critical components should be performed directly from a locally attached terminal, otherwise, strong authentication such as tokens, smart cards, challenge-and-response or one-time passwords etc. should be employed.
- Regularly check online security news or archives, for latest technical advice on security incidents or vulnerabilities.
- Configuration should be reviewed and modified with respect to the latest environmental changes such as changing requirements, emerging security threats or vulnerabilities.
- System welcome, greeting or error messages may disclose internal system information. Disable these messages whenever appropriate.
- If possible, install and use management tools or services to centralise system administration and installation, e.g. using software for site-wide installation of patches.

*** End ***
APPENDIX A RECOMMENDED PROTECTION CHECKLIST FOR INTERNET GATEWAY SECURITY

<table>
<thead>
<tr>
<th>ITEM</th>
<th>RECOMMENDED PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>Firewall Configuration</td>
</tr>
<tr>
<td></td>
<td>All incoming/outgoing traffic should go through the firewall</td>
</tr>
<tr>
<td></td>
<td>Start with 'Deny all services except those explicitly permitted' firewall policy</td>
</tr>
<tr>
<td></td>
<td>Carefully plan and evaluate services allowed</td>
</tr>
<tr>
<td></td>
<td>Enable Network Address Translation (NAT) if available</td>
</tr>
<tr>
<td></td>
<td>Enable content filtering and computer virus and malicious code scanning features</td>
</tr>
<tr>
<td></td>
<td>Properly configure IP level filtering</td>
</tr>
<tr>
<td></td>
<td>Establish flexible firewall policy for future enhancements</td>
</tr>
<tr>
<td></td>
<td>Correctly set and assign file/port permissions on the firewall</td>
</tr>
<tr>
<td></td>
<td>Thoroughly tested before implementation or after major changes</td>
</tr>
<tr>
<td></td>
<td>Keep proper version of all software installed on the firewall</td>
</tr>
<tr>
<td></td>
<td>Set up real-time alerts</td>
</tr>
<tr>
<td></td>
<td>Disable FTP or TELNET traffic originated from external to internal network unless it is necessary</td>
</tr>
<tr>
<td></td>
<td>Secure OS where firewall is installed</td>
</tr>
<tr>
<td></td>
<td>Firewall Administration</td>
</tr>
<tr>
<td></td>
<td>Well document firewall configuration, administration and operational procedures</td>
</tr>
<tr>
<td></td>
<td>Make identical configuration for multiple firewalls when used in parallel</td>
</tr>
<tr>
<td></td>
<td>Perform integrity checking of the configuration files periodically, e.g. using checksums</td>
</tr>
<tr>
<td></td>
<td>Regularly record and review firewall logs</td>
</tr>
<tr>
<td></td>
<td>Make regular backups of the system and configuration files</td>
</tr>
<tr>
<td></td>
<td>Properly maintain administrative and user accounts, and change their passwords periodically</td>
</tr>
<tr>
<td></td>
<td>Provide ongoing training to firewall administrators</td>
</tr>
<tr>
<td></td>
<td>Designate at least 2 firewall administrators</td>
</tr>
<tr>
<td></td>
<td>Incorporate firewall administration with security incident handling</td>
</tr>
<tr>
<td></td>
<td>Establish an effective communication channel between LAN and firewall administrators</td>
</tr>
<tr>
<td></td>
<td>Conduct regular security risk assessment and audit</td>
</tr>
<tr>
<td>ITEM</td>
<td>RECOMMENDED PROTECTION</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Intrusion Detection and Monitoring</td>
<td>Operational Control</td>
</tr>
<tr>
<td></td>
<td>Establish manual procedures for operational control</td>
</tr>
<tr>
<td></td>
<td>Regularly review and analyse logs</td>
</tr>
<tr>
<td></td>
<td>Monitor and analyse user and system activity</td>
</tr>
<tr>
<td></td>
<td>IDS/IPS Tools (if used)</td>
</tr>
<tr>
<td></td>
<td>Use for both network and host machines particularly web or mail servers</td>
</tr>
<tr>
<td></td>
<td>Set up automatic generation of notifications or alerts</td>
</tr>
<tr>
<td></td>
<td>Implement functions to react to suspicious activities e.g.</td>
</tr>
<tr>
<td></td>
<td>disconnect or block those connections</td>
</tr>
<tr>
<td></td>
<td>Properly test and verify before going into operation</td>
</tr>
<tr>
<td></td>
<td>Properly control and restrict the use of these tools</td>
</tr>
<tr>
<td></td>
<td>Properly protect and hide these tools behind firewall</td>
</tr>
<tr>
<td></td>
<td>Keep up-to-date attack signature files</td>
</tr>
<tr>
<td></td>
<td>Establish operating, administrative and monitoring procedures for using these tools</td>
</tr>
<tr>
<td>Protection Against Computer Virus and Malicious Code</td>
<td>Computer Virus and Malicious Code Detection and Prevention</td>
</tr>
<tr>
<td></td>
<td>Enable anti-virus protection to scan all incoming traffic from Internet. The gateway</td>
</tr>
<tr>
<td></td>
<td>should be configured to stop traffic with malicious content, quarantine / drop them, and</td>
</tr>
<tr>
<td></td>
<td>create audit logs for future investigation</td>
</tr>
<tr>
<td></td>
<td>Keep virus signature and malicious code definition up-to-date</td>
</tr>
<tr>
<td></td>
<td>Perform regular computer virus and/or malicious code scanning</td>
</tr>
<tr>
<td></td>
<td>Apply comparable security measures and procedures to computer equipment and software</td>
</tr>
<tr>
<td></td>
<td>under development or being used for testing purposes</td>
</tr>
<tr>
<td></td>
<td>Perform full system scans before the machines are connected to the Government networks</td>
</tr>
<tr>
<td></td>
<td>Request external vendor to perform a computer virus scan (with the latest virus signature)</td>
</tr>
<tr>
<td></td>
<td>after new machine installation, service maintenance, or installation of software</td>
</tr>
<tr>
<td>ITEM</td>
<td>RECOMMENDED PROTECTION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Security Policy, Guidelines and Standards</td>
<td>Establishment and Enforcement of Security Policies, Guidelines and Standards</td>
</tr>
<tr>
<td></td>
<td>Establish own Internet gateway security policy</td>
</tr>
<tr>
<td></td>
<td>Establish related operating procedures e.g. change and configuration management control procedures, backup and recovery procedures, web content management procedures</td>
</tr>
<tr>
<td></td>
<td>Establish and regularly test security incident handling and reporting procedures</td>
</tr>
<tr>
<td></td>
<td>Assign and define roles and responsibilities of staff performing administration and maintenance</td>
</tr>
<tr>
<td></td>
<td>Advise and train users to observe and follow policies</td>
</tr>
<tr>
<td>Security Risk Assessment and Audit</td>
<td>Conduct of Security Risk Assessment and Audit</td>
</tr>
<tr>
<td></td>
<td>Perform security risk assessment at least once every two years and security audit periodically</td>
</tr>
<tr>
<td></td>
<td>Perform security risk assessment before implementation or after major changes</td>
</tr>
<tr>
<td></td>
<td>Clearly define security risk assessment and audit scope and objectives</td>
</tr>
<tr>
<td></td>
<td>Conduct security audit by third parties</td>
</tr>
<tr>
<td></td>
<td>Audit firewall policy</td>
</tr>
<tr>
<td></td>
<td>Assure effectiveness of password management</td>
</tr>
<tr>
<td></td>
<td>Secure auditing results and data</td>
</tr>
<tr>
<td></td>
<td>Control access to assessment and auditing tools, if any</td>
</tr>
<tr>
<td></td>
<td>Follow up audit recommendations as soon as possible</td>
</tr>
</tbody>
</table>