
 1

 

 

2222000000009999////11110000        

IIIITTTT    TTTTrrrraaaaiiiinnnniiiinnnngggg    PPPPrrrrooooggggrrrraaaammmmmmmmeeee    ffffoooorrrr    SSSSMMMMEEEEssss

iiiinnnn    GGGGeeeennnneeeerrrraaaallll    IIIInnnndddduuuussssttttrrrriiiieeeessss    
    

    

<< << << << TTTT09 09 09 09 ---- Unix/Linux Unix/Linux Unix/Linux Unix/Linux 入門入門入門入門>>>>>>>>    

    

    
 

資助機構資助機構資助機構資助機構: 主辦機構主辦機構主辦機構主辦機構: 

 

 

 

 

 

協辦機構協辦機構協辦機構協辦機構:  

 

 

 

 

 

 

 

 

 2

1. Introduction to Unix 

UnixUnixUnixUnix    

The Unix operating system was conceived and implemented in 1969 at AT&T's Bell Laboratories in the United 

States by Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna. It was first released in 1971 and was 

initially entirely written in assembly language, a common practice at the time. Later, in a key pioneering approach 

in 1973, Unix was re-written in the programming language C by Dennis Ritchie, (with exceptions to the kernel and 

I/O). The availability of an operating system written in a high-level language allowed easier portability to different 

computer platforms and Unix became widely adopted by academic institutions and businesses. 

 

GNUGNUGNUGNU    

The GNU Project, started in 1983 by Richard Stallman, had the goal of creating a "complete Unix-compatible 

software system" composed entirely of free software. Work began in 1984.[15] Later, in 1985, Stallman created the 

Free Software Foundation and wrote the GNU General Public License (GNU GPL) in 1989. By the early 1990s, 

many of the programs required in an operating system (such as libraries, compilers, text editors, a Unix shell, and a 

windowing system) were completed, although low-level elements such as device drivers, daemons, and the kernel 

were stalled and incomplete.[16] Linus Torvalds has said that if the GNU kernel had been available at the time (1991), 

he would not have decided to write his own. 



 3

MINIXMINIXMINIXMINIX    

Andrew S. Tanenbaum, author of the MINIX operating system 

MINIX was an inexpensive minimal Unix-like operating system, designed for education in computer science, 

written by Andrew S. Tanenbaum (now MINIX is free and redesigned also for “serious” use). 

In 1991 while attending the University of Helsinki, Torvalds began to work on a non-commercial replacement for 

MINIX,
[18]

 which would eventually become the Linux kernel. 

Torvalds began the development of Linux on MINIX and applications written for MINIX were also used under 

Linux. Later Linux matured and it became possible for Linux to be developed under itself.Also GNU applications 

replaced all MINIX ones because, with code from the GNU system freely available, it was advantageous if this 

could be used with the fledgling OS. Code licensed under the GNU GPL can be used in other projects, so long as 

they also are released under the same or a compatible license. In order to make the Linux kernel compatible with 

the components from the GNU Project, Torvalds initiated a switch from his original license (which prohibited 

commercial redistribution) to the GNU GPL.Developers worked to integrate GNU components with Linux to make 

a fully functional and free operating system. 

 4

LILILILINNNNUUUUXXXX  

 

LinuxLinuxLinuxLinux is a generic term referring to Unix-like computer operating systems based on the Linux kernel. Their 

development is one of the most prominent examples of free and open source software collaboration;
 

typically all the underlying source code can be used, freely modified, and redistributed, both commercially and 

non-commercially, by anyone under licenses such as the GNU GPL. 

Linux is predominantly known for its use in servers, although can be installed on a wide variety of computer 

hardware, ranging from embedded devices, mobile phones and even some watches
 
to mainframes and 

supercomputers. Linux distributions, installed on both desktop and laptop computers, have become increasingly 

commonplace in recent years, partly owing to the popular Ubuntu distribution
 
and the emergence of netbooks. 

The name "Linux" comes from the Linux kernel, originally written in 1991 by Linus Torvalds. The full operating 

system usually comprises components such as utilities and libraries from the GNU Project (announced in 1983 by 

Richard Stallman), the X Window System, the GNOME and KDE desktop environments, and the Apache HTTP 

Server. Commonly-used applications with desktop Linux systems include the Mozilla Firefox web-browser and the 

OpenOffice.org office application suite. The GNU contribution is the basis for the Free Software Foundation's 

preferred name GNU/Linux. 

 

 



 5

What is Linux Shell 

Computer understand the language of 0's and 1's called binary language. 

In early days of computing, instruction are provided using binary language, which is difficult for all of us, to read 

and write. So in Os there is special program called Shell. Shell accepts your instruction or commands in English 

(mostly) and if its a valid command, it is pass to kernel. 

Shell is a user program or it's environment provided for user interaction. Shell is an command language interpreter 

that executes commands read from the standard input device (keyboard) or from a file. 

Shell is not part of system kernel, but uses the system kernel to execute programs, create files etc. 

Several shell available with Linux including: 

Shell Name Shell Name Shell Name Shell Name  Developed by Developed by Developed by Developed by  WhereWhereWhereWhere Remark Remark Remark Remark  

BASH ( Bourne-Again 

SHell ) 

Brian Fox and Chet 

Ramey 

Free Software Foundation Most common shell in 

Linux. It's Freeware shell. 

CSH (C SHell) Bill Joy University of California 

(For BSD) 

The C shell's syntax and 

usage are very similar to 

the C programming 

language. 

KSH (Korn SHell) David Korn AT & T Bell Labs -- 

TCSH See the man page. 

Type $ man tcsh 

-- TCSH is an enhanced but 

completely compatible 

version of the Berkeley 

UNIX C shell (CSH). 

Tip:Tip:Tip:Tip: To find all available shells in your system type following command: 

$ cat /etc/shells$ cat /etc/shells$ cat /etc/shells$ cat /etc/shells 

Note Note Note Note that each shell does the same job, but each understand a different command syntax and provides different 

built-in functions. 

 

 6

In MS-DOS, Shell name is COMMAND.COM which is also used for same purpose, but it's not as powerful as our 

Linux Shells are! 

Any of the above shell reads command from user (via Keyboard or Mouse) and tells Linux Os what users want. If 

we are giving commands from keyboard it is called command line interface ( Usually in-front of $ prompt, This 

prompt is depend upon your shell and Environment that you set or by your System Administrator, therefore you 

may get different prompt ). 

Tip:Tip:Tip:Tip: To find your current shell type following command 

$ ec$ ec$ ec$ echo $SHELL ho $SHELL ho $SHELL ho $SHELL  

 

How to use Shell 

To use shell (You start to use your shell as soon as you log into your system) you have to simply type 

commands. 

 

What is Shell Script ? 

Normally shells are interactive. It means shell accept command from you (via keyboard) and execute them. 

But if you use command one by one (sequence of 'n' number of commands) , the you can store this sequence 

of command to text file and tell the shell to execute this text file instead of entering the commands. This is 

know as shell script. 

Shell script defined as:    

"Shell Script is series of commandseries of commandseries of commandseries of command written in plain text file in plain text file in plain text file in plain text file. Shell script is just like batch file is MS-DOS but have 

more power than the MS-DOS batch file." 



 7

2. Text Editing 

Vi(m)Vi(m)Vi(m)Vi(m)    

Vim stands for "Vi IMproved". It used to be "Vi IMitation", but there are so many improvements that a name 

change was appropriate. Vim is a text editor which includes almost all the commands from the UNIX program vivivivi 

and a lot of new ones. 

Commands in the vivivivi editor are entered using only the keyboard, which has the advantage that you can keep your 

fingers on the keyboard and your eyes on the screen, rather than moving your arm repeatedly to the mouse. For 

those who want it, mouse support and a GUI version with scrollbars and menus can be activated. 

We will refer to vivivivi or vimvimvimvim throughout this book for editing files, while you are of course free to use the editor of 

your choice. However, we recommend to at least get the vivivivi basics in the fingers, because it is the standard text 

editor on almost all UNIX systems, while emacsemacsemacsemacs can be an optional package. There may be small differences 

between different computers and terminals, but the main point is that if you can work with vivivivi, you can survive on 

any UNIX system. 

Moving through the textMoving through the textMoving through the textMoving through the text    

Moving through the text is usually possible with the arrow keys. If not, try: 

• hhhh to move the cursor to the left 

• llll to move it to the right 

• kkkk to move up 

• jjjj to move down 

SHIFT-G will put the prompt at the end of the document. 

 8

Basic operations 

These are some popular vivivivi commands: 

• n ddn ddn ddn dd will delete n lines starting from the current cursor position. 

• n dwn dwn dwn dw will delete n words at the right side of the cursor. 

• xxxx will delete the character on which the cursor is positioned 

• :n:n:n:n moves to line n of the file. 

• :w:w:w:w will save (write) the file 

• :q:q:q:q will exit the editor. 

• :q!:q!:q!:q! forces the exit when you want to quit a file containing unsaved changes. 

• :wq:wq:wq:wq will save and exit 

• :w newfile:w newfile:w newfile:w newfile will save the text to newfile. 

• :wq!:wq!:wq!:wq! overrides read-only permission (if you have the permission to override permissions, for instance when 

you are using the root account. 

• /astring/astring/astring/astring will search the string in the file and position the cursor on the first match below its position. 

• //// will perform the same search again, moving the cursor to the next match. 

• :1, $s/word/anotherword/g:1, $s/word/anotherword/g:1, $s/word/anotherword/g:1, $s/word/anotherword/g will replace word with anotherword throughout the file. 

• yyyyyyyy will copy a block of text. 

• n pn pn pn p will paste it n times. 

• :recover:recover:recover:recover will recover a file after an unexpected interruption. 

Commands that switch the editor to insert modeCommands that switch the editor to insert modeCommands that switch the editor to insert modeCommands that switch the editor to insert mode    

• aaaa will append: it moves the cursor one position to the right before switching to insert mode 

• iiii will insert 

• oooo will insert a blank line under the current cursor position and move the cursor to that line. 

Pressing the Esc key switches back to command mode. If you're not sure what mode you're in because you 

use a really old version of vi that doesn't display an "INSERT" message, type Esc and you'll be sure to return 

to command mode. It is possible that the system gives a little alert when you are already in command mode 

when hitting Esc, by beeping or giving a visual bell (a flash on the screen). This is normal behavior. 



 9

3. The File System 

 

EXT2 

The ext2ext2ext2ext2 or second extended filesystemsecond extended filesystemsecond extended filesystemsecond extended filesystem is a file system for the Linux kernel. It was initially designed by Rémy 

Card as a replacement for the extended file system (ext). 

The canonical implementation of ext2 is the ext2fs filesystem driver in the Linux kernel. Other implementations (of 

varying quality and completeness) exist in GNU Hurd, Mac OS X (third-party), Darwin (same third-party as Mac 

OS X but untested), some BSD kernels, in Atari MiNT, and as third-party Microsoft Windows drivers. 

ext2 was the default filesystem in several Linux distributions, including Debian and Red Hat Linux, until 

supplanted more recently by ext3, which is almost completely compatible with ext2 and is a journaling file system. 

ext2 is still the filesystem of choice for flash-based storage media (such as SD cards, SSDs, and USB flash drives) 

since its lack of a journal minimizes the number of writes and flash devices have only a limited number of write 

cycles. 

ext2 data structures 

The space in ext2 is split up in blocks, and organized into block groups, analogous to cylinder groups in the Unix 

File System. This is done to reduce external fragmentation and minimize the number of disk seeks when reading a 

large amount of consecutive data. 

Each block group may contain a copy of the superblock and block group descriptor table, and all block groups 

contain a block bitmap, an inode bitmap, an inode table and followed by the actual data blocks. 

The superblock contains important information that is crucial to the booting of the operating system, thus backup 

copies are made in multiple block groups in the file system. However, typically only the first copy of it, which is 

found at the first block of the file system, is used in the booting. 

The group descriptor stores the location of the block bitmap, inode bitmap and the start of the inode table for every 

block group and these, in turn are stored in a group descriptor table. 

 

 10

Example of ext2 inode structure: 

 

 



 11 

EXT3 

The ext3 or third extended filesystem is a journaled file system that is commonly used by the Linux kernel. 

It is the default file system for many popular Linux distributions. Stephen Tweedie first revealed that he was 

working on extending ext2 in Journaling the Linux ext2fs Filesystem in a 1998 paper and later in a February 

1999 kernel mailing list posting, and the filesystem was merged with the mainline Linux kernel in November 

2001 from 2.4.15 onward.
[2][3][4]

 Its main advantage over ext2 is journaling which improves reliability and 

eliminates the need to check the file system after an unclean shutdown. Its successor is ext4. 

 

Advantages 

Although its performance (speed) is less attractive than competing Linux filesystems such as JFS, ReiserFS and 

XFS, it has a significant advantage in that it allows in-place upgrades from the ext2 file system without having to 

back up and restore data. Ext3 also uses less CPU power than ReiserFS and XFS.[5] It is also considered safer than 

the other Linux file systems due to its relative simplicity and wider testing base.
[citation needed]

 

The ext3 file system adds, over its predecessor: 

• A Journaling file system 

• Online file system growth 

• Htree indexing for larger directories. An HTree is a specialized version of a B-tree (not to be confused 

with the H tree fractal)
[6]

. 

Without these, any ext3 file system is also a valid ext2 file system. This has allowed well-tested and mature file 

system maintenance utilities for maintaining and repairing ext2 file systems to also be used with ext3 without major 

changes. The ext2 and ext3 file systems share the same standard set of utilities, e2fsprogs, which includes a fsck 

tool. The close relationship also makes conversion between the two file systems (both forward to ext3 and 

backward to ext2) straightforward. 

While in some contexts the lack of "modern" filesystem features such as dynamic inode allocation and extents 

could be considered a disadvantage, in terms of recoverability this gives ext3 a significant advantage over file 

systems with those features. The file system metadata is all in fixed, well-known locations, and there is some 

redundancy inherent in the data structures that may allow ext2 and ext3 to be recoverable in the face of significant 

data corruption, where tree-based file systems may not be recoverable. 

 12

Sorts of filesSorts of filesSorts of filesSorts of files    

Most files are just files, called regular files; they contain normal data, for example text files, executable files or 

programs, input for or output from a program and so on. 

While it is reasonably safe to suppose that everything you encounter on a Linux system is a file, there are some 

exceptions. 

• Directories: files that are lists of other files. 

• Special files: the mechanism used for input and output. Most special files are in /dev, we will discuss them 

later. 

• Links: a system to make a file or directory visible in multiple parts of the system's file tree. We will talk 

about links in detail. 

• (Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter-process networking 

protected by the file system's access control. 

• Named pipes: act more or less like sockets and form a way for processes to communicate with each other, 

without using network socket semantics. 

The -l option to lslslsls displays the file type, using the first character of each input line: 

 

jaime:~/Documents> ls ls ls ls ----llll 

total 80 

-rw-rw-r--   1 jaime   jaime   31744 Feb 21 17:56 intro Linux.doc 

-rw-rw-r--   1 jaime   jaime   41472 Feb 21 17:56 Linux.doc 

drwxrwxr-x   2 jaime   jaime    4096 Feb 25 11:50 course 

 



 13

Table File types in a long listTable File types in a long listTable File types in a long listTable File types in a long list 

Symbol    Meaning    

- Regular file 

D Directory 

l Link 

c Special file 

s Socket 

p Named pipe 

b Block device 

 

 14

Partition layout and typesPartition layout and typesPartition layout and typesPartition layout and types    

There are two kinds of major partitions on a Linux system: 

• data partition: normal Linux system data, including the root partition containing all the data to start up and 

run the system; and  

• swap partition: expansion of the computer's physical memory, extra memory on hard disk. 

Most systems contain a root partition, one or more data partitions and one or more swap partitions. Systems in 

mixed environments may contain partitions for other system data, such as a partition with a FAT or VFAT file 

system for MS Windows data. 

Most Linux systems use fdiskfdiskfdiskfdisk at installation time to set the partition type. As you may have noticed during the 

exercise from Chapter 1, this usually happens automatically. On some occasions, however, you may not be so lucky. 

In such cases, you will need to select the partition type manually and even manually do the actual partitioning. The 

standard Linux partitions have number 82 for swap and 83 for data, which can be journaled (ext3) or normal (ext2, 

on older systems). The fdiskfdiskfdiskfdisk utility has built-in help, should you forget these values. 

Apart from these two, Linux supports a variety of other file system types, such as the relatively new Reiser file 

system, JFS, NFS, FATxx and many other file systems natively available on other (proprietary) operating systems. 

The standard root partition (indicated with a single forward slash, /) is about 100-500 MB, and contains the system 

configuration files, most basic commands and server programs, system libraries, some temporary space and the 

home directory of the administrative user. A standard installation requires about 250 MB for the root partition. 

The rest of the hard disk(s) is generally divided in data partitions, although it may be that all of the non-system 

critical data resides on one partition, for example when you perform a standard workstation installation. When 

non-critical data is separated on different partitions, it usually happens following a set pattern: 

• a partition for user programs (/usr) 

• a partition containing the users' personal data (/home) 

• a partition to store temporary data like print- and mail-queues (/var) 

• a partition for third party and extra software (/opt) 

Once the partitions are made, you can only add more. Changing sizes or properties of existing partitions is possible 

but not advisable. 



 15

Mount pointsMount pointsMount pointsMount points    

All partitions are attached to the system via a mount point. The mount point defines the place of a particular data 

set in the file system. Usually, all partitions are connected through the root partition. On this partition, which is 

indicated with the slash (/), directories are created. These empty directories will be the starting point of the 

partitions that are attached to them. An example: given a partition that holds the following directories: 

 

videos/  cd-images/ pictures/ 

We want to attach this partition in the filesystem in a directory called /opt/media. In order to do this, the system 

administrator has to make sure that the directory /opt/media exists on the system. Preferably, it should be an 

empty directory. How this is done is explained later in this chapter. Then, using the mountmountmountmount command, the 

administrator can attach the partition to the system. When you look at the content of the formerly empty directory 

/opt/media, it will contain the files and directories that are on the mounted medium (hard disk or partition of a 

hard disk, CD, DVD, flash card, USB or other storage device). 

During system startup, all the partitions are thus mounted, as described in the file /etc/fstab. Some partitions are 

not mounted by default, for instance if they are not constantly connected to the system, such like the storage used 

by your digital camera. If well configured, the device will be mounted as soon as the system notices that it is 

connected, or it can be user-mountable, i.e. you don't need to be system administrator to attach and detach the 

device to and from the system. 

 16

The chmod commandThe chmod commandThe chmod commandThe chmod command    

Table File protection with chmodTable File protection with chmodTable File protection with chmodTable File protection with chmod 

CommandCommandCommandCommand    MeaningMeaningMeaningMeaning    

chmod chmod chmod chmod 400400400400    filefilefilefile To protect a file against accidental overwriting. 

chmod chmod chmod chmod 500500500500    

directorydirectorydirectorydirectory 

To protect yourself from accidentally removing, renaming or moving files from this 

directory. 

chmod chmod chmod chmod 600600600600    filefilefilefile A private file only changeable by the user who entered this command. 

chmod chmod chmod chmod 644644644644    filefilefilefile A publicly readable file that can only be changed by the issuing user. 

chmod chmod chmod chmod 660660660660    filefilefilefile Users belonging to your group can change this file, others don't have any access to it at all. 

chmod chmod chmod chmod 700700700700    filefilefilefile 
Protects a file against any access from other users, while the issuing user still has full 

access. 

chmod chmod chmod chmod 755755755755    

directorydirectorydirectorydirectory 

For files that should be readable and executable by others, but only changeable by the 

issuing user. 

chmod chmod chmod chmod 775775775775    filefilefilefile Standard file sharing mode for a group. 

chmod chmod chmod chmod 777777777777    filefilefilefile Everybody can do everything to this file. 

File permissionsFile permissionsFile permissionsFile permissions 

WhoWhoWhoWho\\\\WhatWhatWhatWhat    r(ead)r(ead)r(ead)r(ead)    w(rite)w(rite)w(rite)w(rite)    (e)x(ecute)(e)x(ecute)(e)x(ecute)(e)x(ecute)    

u(ser) 4 2 1 

g(roup) 4 2 1 

o(ther) 4 2 1 

 



 17

4. Text File Manipulation4. Text File Manipulation4. Text File Manipulation4. Text File Manipulation    

In computing, regular expressionsregular expressionsregular expressionsregular expressions, also referred to as regexregexregexregex or regexpregexpregexpregexp, provide a concise and flexible means for 

matching strings of text, such as particular characters, words, or patterns of characters. A regular expression is 

written in a formal language that can be interpreted by a regular expression processor, a program that either serves 

as a parser generator or examines text and identifies parts that match the provided specification. 

The following examples illustrate a few specifications that could be expressed in a regular expression: 

• The sequence of characters "car" in any context, such as "car", "cartoon", or "bicarbonate" 

• The word "car" when it appears as an isolated word 

• The word "car" when preceded by the word "blue" or "red" 

• A dollar sign immediately followed by one or more digits, and then optionally a period and exactly two 

more digits 

Regular expressions can be much more complex than these examples. 

Regular expressions are used by many text editors, utilities, and programming languages to search and manipulate 

text based on patterns. For example, Perl, Ruby and Tcl have a powerful regular expression engine built directly 

into their syntax. Several utilities provided by Unix distributions—including the editor ed and the filter grep—were 

the first to popularize the concept of regular expressions. 

As an example of the syntax, the regular expression \bex can be used to search for all instances of the string "ex" 

that occur after "word boundaries" (signified by the \b). In layman's terms, \bex will find the matching string "ex" 

in two possible locations, (1) at the beginning of words, and (2) between two characters in a string, where one is a 

word character and the other is not a word character. Thus, in the string "Texts for experts," \bex matches the "ex" 

in "experts" but not in "Texts" (because the "ex" occurs inside a word and not immediately after a word boundary). 

Many modern computing systems provide wildcard characters in matching filenames from a file system. This is a 

core capability of many command-line shells and is also known as globbing. Wildcards differ from regular 

expressions in generally only expressing very limited forms of alternatives. 

 18

Basic concepts 

Boolean "or" 

A vertical bar separates alternatives. For example, gray|grey can match "gray" or "grey". 

Grouping 

Parentheses are used to define the scope and precedence of the operators (among other uses). For example, 

gray|grey and gr(a|e)y are equivalent patterns which both describe the set of "gray" and "grey". 

Quantification 

A quantifier after a token (such as a character) or group specifies how often that preceding element is 

allowed to occur. The most common quantifiers are the question mark ?, the asterisk * (derived from the 

Kleene star), and the plus sign +. 

???? The question mark indicates there is zero or one of the preceding element. For example, colou?r 

matches both "color" and "colour". 

**** The asterisk indicates there are zero or more of the preceding element. For example, ab*c matches "ac", 

"abc", "abbc", "abbbc", and so on. 

++++ The plus sign indicates that there is one or more of the preceding element. For example, ab+c matches 

"abc", "abbc", "abbbc", and so on, but not "ac". 

 



 19

 

grep command syntax 

grepgrepgrepgrep 'word' filename 

grepgrepgrepgrep 'string1 string2'  filename 

catcatcatcat otherfile | grepgrepgrepgrep 'something' 

commandcommandcommandcommand | grepgrepgrepgrep 'something' 

Use grep to search file 

Search /etc/passwd for boo user: 

$ grep boo /etc/passwd 

You can force grep to ignore word case i.e match boo, Boo, BOO and all other combination with -i option: 

$ grep -i "boo" /etc/passwd 

Use grep recursively 

You can search recursively i.e. read all files under each directory for a string "192.168.1.5" 

$ grep -r "192.168.1.5" /etc/ 

Use grep to search words only 

When you search for boo, grep will match fooboo, boo123, etc. You can force grep to select only those lines 

containing matches that form whole words i.e. match only boo word: 

$ grep -w "boo" /path/to/file 

Use grep to search 2 different words  

use egrep as follows: 

$ egrep -w 'word1|word2' /path/to/file 

 20

Count line when words has been matched 

grep can report the number of times that the pattern has been matched for each file using -c (count) option: 

$ grep -c 'word' /path/to/file 

Also note that you can use -n option, which causes grep to precede each line of output with the number of the line 

in the text file from which it was obtained: 

$ grep -n 'word' /path/to/file 

Grep invert match 

You can use -v option to print inverts the match; that is, it matches only those lines that do not contain the given 

word. For example print all line that do not contain the word bar: 

$ grep -v bar /path/to/file 



 21

SedSedSedSed    

sedsedsedsed (stream editor) is a Unix utility that (a) parses text files and (b) implements a programming language which can 

apply textual transformations to such files. It reads input files line by line (sequentially), applying the operation 

which has been specified via the command line (or a sed script), and then outputs the line. It was developed from 

1973 to 1974 as a Unix utility by Lee E. McMahon of Bell Labs,[1] and is available today for most operating 

systems. 

Samples 

To delete a word from the file use: 

sed '/yourword/d' yourfile > newfile 

To delete two words for a file simultaneously use: 

sed -e s/firstword//g -e s/secondword//g myfile > newfile 

In the next example, sed, which usually only works on one line, removes newlines from sentences where the second 

sentence starts with one space. Consider the following text: 

This is my cat 

 my cat's name is betty 

This is my dog 

 my dog's name is frank 

The sed script below will turn it into: 

This is my cat my cat's name is betty 

This is my dog my dog's name is frank 

 22

Here's the script: 

sed 'N;s/\n / /;P;D;' 

• (N) add the next line to the work buffer 

• (s) substitute 

• (/\n /) match: \n (newline character in Unix) and one space 

• (/ /) replace with: one space 

• (P) print the top line of the work buffer 

• (D) delete the top line from the work buffer and run the script again 



 23

Awk 

The first awk 

Let's go ahead and start playing around with awk to see how it works. At the command line, enter the following 

command: 

$ awk '{ print }' /etc/passwd  

 

You should see the contents of your /etc/passwd file appear before your eyes. Now, for an explanation of what awk 

did. When we called awk, we specified /etc/passwd as our input file. When we executed awk, it evaluated the print 

command for each line in /etc/passwd, in order. All output is sent to stdout, and we get a result identical to catting 

/etc/passwd. Now, for an explanation of the { print } code block. In awk, curly braces are used to group blocks of 

code together, similar to C. Inside our block of code, we have a single print command. In awk, when a print 

command appears by itself, the full contents of the current line are printed.  

Here is another awk example that does exactly the same thing: 

$ awk '{ print $0 }' /etc/passwd  

 

In awk, the $0 variable represents the entire current line, so print and print $0 do exactly the same thing. If 

you'd like, you can create an awk program that will output data totally unrelated to the input data. Here's an 

example: 

$ awk '{ print "" }' /etc/passwd  

 

Whenever you pass the "" string to the print command, it prints a blank line. If you test this script, you'll find that 

awk outputs one blank line for every line in your /etc/passwd file. Again, this is because awk executes your script 

for every line in the input file. Here's another example: 

$ awk '{ print "hiya" }' /etc/passwd  

 

Running this script will fill your screen with hiya's. :)  

 

 24

Multiple fields 

Awk is really good at handling text that has been broken into multiple logical fields, and allows you to effortlessly 

reference each individual field from inside your awk script. The following script will print out a list of all user 

accounts on your system: 

$ awk -F":" '{ print $1 }' /etc/passwd  

 

Above, when we called awk, we use the -F option to specify ":" as the field separator. When awk processes the 

print $1 command, it will print out the first field that appears on each line in the input file. Here's another 

example: 

$ awk -F":" '{ print $1 $3 }' /etc/passwd  

 

Here's an excerpt of the output from this script: 

halt7  

operator11  

root0  

shutdown6  

sync5  

bin1  

....etc.  

 

As you can see, awk prints out the first and third fields of the /etc/passwd file, which happen to be the username 

and uid fields respectively. Now, while the script did work, it's not perfect -- there aren't any spaces between the 

two output fields! If you're used to programming in bash or python, you may have expected the print $1 $3 

command to insert a space between the two fields. However, when two strings appear next to each other in an awk 

program, awk concatenates them without adding an intermediate space. The following command will insert a space 

between both fields: 

$ awk -F":" '{ print $1 " " $3 }' /etc/passwd  

 



 25

 

When you call print this way, it'll concatenate $1, " ", and $3, creating readable output. Of course, we can also 

insert some text labels if needed: 

$ awk -F":" '{ print "username: " $1 "\t\tuid:" $3" }' /etc/passwd  

 

This will cause the output to be: 

username: halt     uid:7  

username: operator uid:11  

username: root     uid:0  

username: shutdown uid:6  

username: sync     uid:5  

username: bin      uid:1  

....etc.  

 

 

 26

5. Other File Processing Commands 

Quickstart commandsQuickstart commandsQuickstart commandsQuickstart commands 

CommandCommandCommandCommand    MeaningMeaningMeaningMeaning    

LsLsLsLs Displays a list of files in the current working directory, like the dirdirdirdir command in DOS 

cd cd cd cd directorydirectorydirectorydirectory change directories 

passwdpasswdpasswdpasswd change the password for the current user 

file file file file filenamefilenamefilenamefilename display file type of file with name filename 

cat cat cat cat textfiletextfiletextfiletextfile throws content of textfile on the screen 

pwdpwdpwdpwd display present working directory 

ExitExitExitExit or logoutlogoutlogoutlogout leave this session 

man man man man commandcommandcommandcommand read man pages on commandcommandcommandcommand 

Info Info Info Info commandcommandcommandcommand read Info pages on commandcommandcommandcommand 

apropos apropos apropos apropos strinstrinstrinstringggg search the whatis database for strings 

 

ColorColorColorColor----ls default color schemels default color schemels default color schemels default color scheme 

ColorColorColorColor    File typeFile typeFile typeFile type    

blue directories 

red compressed archives 

white text files 

pink images 

cyan links 

yellow devices 

green executables 

flashing red broken links 



 27

The head and tailThe head and tailThe head and tailThe head and tail commands commands commands commands    

These two commands display the n first/last lines of a file respectively. To see the last ten commands entered: 

 

tony:~> tail tail tail tail ----10 .bash_history 10 .bash_history 10 .bash_history 10 .bash_history  

locate configure | grep bin 

man bash 

cd 

xawtv & 

grep usable /usr/share/dict/words  

grep advisable /usr/share/dict/words  

info quota 

man quota 

echo $PATH 

frm 

headheadheadhead works similarly. The tailtailtailtail command has a handy feature to continuously show the last n lines of a file that 

changes all the time. This -f option is often used by system administrators to check on log files. More information 

is located in the system documentation files. 

 28

Linking files 

Since we know more about files and their representation in the file system, understanding links (or shortcuts) is a 

piece of cake. A link is nothing more than a way of matching two or more file names to the same set of file data. 

There are two ways to achieve this: 

• Hard link: Associate two or more file names with the same inode. Hard links share the same data blocks on 

the hard disk, while they continue to behave as independent files. 

There is an immediate disadvantage: hard links can't span partitions, because inode numbers are only 

unique within a given partition. 

• Soft link or symbolic link (or for short: symlink): a small file that is a pointer to another file. A symbolic 

link contains the path to the target file instead of a physical location on the hard disk. Since inodes are not 

used in this system, soft links can span across partitions. 

The two link types behave similar, but are not the same, as illustrated in the scheme below: 

Figure 3Figure 3Figure 3Figure 3----2. Hard and soft link mechanism2. Hard and soft link mechanism2. Hard and soft link mechanism2. Hard and soft link mechanism 

 



 29

Note that removing the target file for a symbolic link makes the link useless. 

 

 30

The at command 

The atatatat command executes commands at a given time, using your default shell unless you tell the command 

otherwise (see the man page). 

The options to atatatat are rather user-friendly, which is demonstrated in the examples below: 

 

steven@home:~> at tomorrow + 2 daysat tomorrow + 2 daysat tomorrow + 2 daysat tomorrow + 2 days 

warning: commands will be executed using (in order) a) $SHELL 

        b) login shell c) /bin/sh 

at>  cat reports | mail myboss@mycompany cat reports | mail myboss@mycompany cat reports | mail myboss@mycompany cat reports | mail myboss@mycompany 

at> <EOT> 

job 1 at 2001-06-16 12:36 

Typing CtrlCtrlCtrlCtrl+DDDD quits the atatatat utility and generates the "EOT" message. 

Redirecting Input and Output. 

 

steven@home:~> at 0237at 0237at 0237at 0237 

warning: commands will be executed using (in order) a) $SHELL 

        b) login shell c) /bin/sh 

at>  cd new cd new cd new cd new----programsprogramsprogramsprograms 

at>  ./configure; make ./configure; make ./configure; make ./configure; make 

at> <EOT> 

job 2 at 2001-06-14 02:00 

 



 31

 

Cron and crontabCron and crontabCron and crontabCron and crontab    

The cron system is managed by the croncroncroncron daemon. It gets information about which programs and when they should 

run from the system's and users' crontab entries. Only the root user has access to the system crontabs, while each 

user should only have access to his own crontabs. On some systems (some) users may not have access to the cron 

facility. 

At system startup the cron daemon searches /var/spool/cron/ for crontab entries which are named after 

accounts in /etc/passwd, it searches /etc/cron.d/ and it searches /etc/crontab, then uses this information 

every minute to check if there is something to be done. It executes commands as the user who owns the crontab file 

and mails any output of commands to the owner. 

On systems using Vixie cron, jobs that occur hourly, daily, weekly and monthly are kept in separate directories in 

/etc to keep an overview, as opposed to the standard UNIX cron function, where all tasks are entered into one big 

file. 

Example of a Vixie crontab file: 

 

[root@blob /etc]# more crontabmore crontabmore crontabmore crontab 

SHELL=/bin/bash 

PATH=/sbin:/bin:/usr/sbin:/usr/bin 

MAILTO=root 

HOME=/ 

 

# run-parts 

# commands to execute every hour 

01 * * * * root run-parts /etc/cron.hourly 

# commands to execute every day 

02 4 * * * root run-parts /etc/cron.daily 

# commands to execute every week 

22 4 * * 0 root run-parts /etc/cron.weekly 

commands to execute every month 

42 4 1 * * root run-parts /etc/cron.monthly 

 32

 

6. Networking Command 

 

Network configuration files 

etc/hostsetc/hostsetc/hostsetc/hosts    

The /etc/hosts file always contains the localhost IP address, 127.0.0.1, which is used for interprocess 

communication. Never remove this line! Sometimes contains addresses of additional hosts, which can be contacted 

without using an external naming service such as DNS (the Domain Name Server). 

A sample hosts file for a small home network: 

 

# Do not remove the following line, or various programs 

# that require network functionality will fail. 

127.0.0.1       localhost.localdomain   localhost 

192.168.52.10 tux.mylan.com  tux 

192.168.52.11 winxp.mylan.com  winxp 

Read more in man man man man hostshostshostshosts. 

/etc/resolv.conf/etc/resolv.conf/etc/resolv.conf/etc/resolv.conf    

The /etc/resolv.conf file configures access to a DNS serve 

 

search mylan.com 

nameserver 193.134.20.4 

Read more in the resolv.conf man page. 



 33

 

/etc/nsswitch.conf/etc/nsswitch.conf/etc/nsswitch.conf/etc/nsswitch.conf    

The /etc/nsswitch.conf file defines the order in which to contact different name services. For Internet use, it is 

important that dns shows up in the "hosts" line: 

 

[bob@tux ~] grep hosts /etc/nsswitch.confgrep hosts /etc/nsswitch.confgrep hosts /etc/nsswitch.confgrep hosts /etc/nsswitch.conf 

hosts: files dns 

This instructs your computer to look up hostnames and IP addresses first in the /etc/hosts file, and to contact the 

DNS server if a given host does not occur in the local hosts file. Other possible name services to contact are 

LDAP, NIS and NIS+. 

More in man man man man nsswitch.confnsswitch.confnsswitch.confnsswitch.conf. 

 34

 

The ip command 

The distribution-specific scripts and graphical tools are front-ends to ipipipip (or ifconfigifconfigifconfigifconfig and routerouterouteroute on older systems) to 

display and configure the kernel's networking configuration. 

The ipipipip command is used for assigning IP addresses to interfaces, for setting up routes to the Internet and to other 

networks, for displaying TCP/IP configurations etcetera. 

The following commands show IP address and routing information: 

 

benny@home benny> ip addr showip addr showip addr showip addr show 

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue  

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 

    inet 127.0.0.1/8 brd 127.255.255.255 scope host lo 

    inet6 ::1/128 scope host  

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 

    link/ether 00:50:bf:7e:54:9a brd ff:ff:ff:ff:ff:ff 

    inet 192.168.42.15/24 brd 192.168.42.255 scope global eth0 

    inet6 fe80::250:bfff:fe7e:549a/10 scope link  

 

benny@home benny> ip route showip route showip route showip route show 

192.168.42.0/24 dev eth0  scope link  

127.0.0.0/8 dev lo  scope link  

default via 192.168.42.1 dev eth0  

 

 



 35

The ifconfig The ifconfig The ifconfig The ifconfig commandcommandcommandcommand    

While ipipipip is the most novel way to configure a Linux system, ifconfigifconfigifconfigifconfig is still very popular. Use it without option for 

displaying network interface information: 

 

els@asus:~$ /sbin/ifconfig/sbin/ifconfig/sbin/ifconfig/sbin/ifconfig 

eth0      Link encap:Ethernet  HWaddr 00:50:70:31:2C:14 

          inet addr:60.138.67.31  Bcast:66.255.255.255  Mask:255.255.255.192 

          inet6 addr: fe80::250:70ff:fe31:2c14/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:31977764 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:51896866 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:802207 txqueuelen:1000 

          RX bytes:2806974916 (2.6 GiB)  TX bytes:2874632613 (2.6 GiB) 

          Interrupt:11 Base address:0xec00 

          lo        

Link encap:Local Loopback 

   inet addr:127.0.0.1  Mask:255.0.0.0 

   inet6 addr: ::1/128 Scope:Host 

   UP LOOPBACK RUNNING  MTU:16436  Metric:1 

   RX packets:765762 errors:0 dropped:0 overruns:0 frame:0 

   TX packets:765762 errors:0 dropped:0 overruns:0 carrier:0 

   collisions:0 txqueuelen:0 

   RX bytes:624214573 (595.2 MiB)  TX bytes:624214573 (595.2 MiB) 

Here, too, we note the most important aspects of the interface configuration: 

• The IP address is marked with "inet addr". 

• The hardware address follows the "HWaddr" tag. 

Both ifconfigifconfigifconfigifconfig and ipipipip display more detailed configuration information and a number of statistics about each interface 

and, maybe most important, whether it is "UP" and "RUNNING". 

 36

Checking the host configuration with netstat 

Apart from the ipipipip command for displaying the network configuration, there's the common netstatnetstatnetstatnetstat command which 

has a lot of options and is generally useful on any UNIX system. 

Routing information can be displayed with the -nr option to the netstatnetstatnetstatnetstat command: 

 

bob:~> netstat netstat netstat netstat ----nrnrnrnr 

Kernel IP routing table 

Destination  Gateway      Genmask       Flags MSS Window irtt Iface 

192.168.42.0 0.0.0.0      255.255.255.0 U      40 0         0 eth0 

127.0.0.0    0.0.0.0      255.0.0.0     U      40 0         0 lo 

0.0.0.0      192.168.42.1 0.0.0.0       UG     40 0         0 eth0 

This is a typical client machine in an IP network. It only has one network device, eth0. The lo interface is the local 

loop. 

 



 37

7. Basic User Commands 

    Exit / logout 

     

For convenience, the Linux file system is usually thought of in a tree structure. On a standard Linux system you 

will find the layout generally follows the scheme presented below. 

 38

Figure Linux file system layoutFigure Linux file system layoutFigure Linux file system layoutFigure Linux file system layout 

 



 39

Subdirectories of the root directorySubdirectories of the root directorySubdirectories of the root directorySubdirectories of the root directory 

DirectoryDirectoryDirectoryDirectory    ContentContentContentContent    

/bin Common programs, shared by the system, the system administrator and the users. 

/boot 

The startup files and the kernel, vmlinuz. In some recent distributions also grub data. Grub is the 

GRand Unified Boot loader and is an attempt to get rid of the many different boot-loaders we know 

today. 

/dev 
Contains references to all the CPU peripheral hardware, which are represented as files with special 

properties. 

/etc 
Most important system configuration files are in /etc, this directory contains data similar to those in 

the Control Panel in Windows 

/home Home directories of the common users. 

/initrd (on some distributions) Information for booting. Do not remove! 

/lib Library files, includes files for all kinds of programs needed by the system and the users. 

/lost+found Every partition has a lost+found in its upper directory. Files that were saved during failures are here. 

/misc For miscellaneous purposes. 

/mnt Standard mount point for external file systems, e.g. a CD-ROM or a digital camera. 

/net Standard mount point for entire remote file systems 

/opt Typically contains extra and third party software. 

/proc 

A virtual file system containing information about system resources. More information about the 

meaning of the files in proc is obtained by entering the command man man man man procprocprocproc in a terminal window. 

The file proc.txt discusses the virtual file system in detail. 

/root 
The administrative user's home directory. Mind the difference between /, the root directory and /root, 

the home directory of the root user. 

/sbin Programs for use by the system and the system administrator. 

/tmp Temporary space for use by the system, cleaned upon reboot, so don't use this for saving any work! 

/usr Programs, libraries, documentation etc. for all user-related programs. 

/var 

Storage for all variable files and temporary files created by users, such as log files, the mail queue, the 

print spooler area, space for temporary storage of files downloaded from the Internet, or to keep an 

image of a CD before burning it. 

 

 40

Absolute and relative paths 

A path, which is the way you need to follow in the tree structure to reach a given file, can be described as starting 

from the trunk of the tree (the / or root directory). In that case, the path starts with a slash and is called an absolute 

path, since there can be no mistake: only one file on the system can comply. 

In the other case, the path doesn't start with a slash and confusion is possible between ~/bin/wc (in the user's 

home directory) and bin/wc in /usr, from the previous example. Paths that don't start with a slash are 

always relative. 



 41

 

Creating directoriesCreating directoriesCreating directoriesCreating directories    

A way of keeping things in place is to give certain files specific default locations by creating directories and 

subdirectories (or folders and sub-folders if you wish). This is done with the mkdirmkdirmkdirmkdir command: 

 

richard:~> mkdir archivemkdir archivemkdir archivemkdir archive 

 

richard:~> ls ls ls ls ----ld archiveld archiveld archiveld archive 

drwxrwxrwx  2 richard richard           4096 Jan 13 14:09 archive/ 

Creating directories and subdirectories in one step is done using the -p option: 

 

richard:~> cd archivecd archivecd archivecd archive 

 

richard:~/archive> mkdir 1999 2000 2001mkdir 1999 2000 2001mkdir 1999 2000 2001mkdir 1999 2000 2001 

 

richard:~/archive> lslslsls 

1999/  2000/  2001/ 

 

richard:~/archive> mkdir 2001/reports/Restaurantsmkdir 2001/reports/Restaurantsmkdir 2001/reports/Restaurantsmkdir 2001/reports/Restaurants----Michelin/Michelin/Michelin/Michelin/ 

mkdir: cannot create directory `2001/reports/Restaurants-Michelin/': 

No such file or directory 

 

richard:~/archive> mkdir mkdir mkdir mkdir ----p 2001/reports/Restaurantsp 2001/reports/Restaurantsp 2001/reports/Restaurantsp 2001/reports/Restaurants----Michelin/Michelin/Michelin/Michelin/ 

 

richard:~/archive> ls 2001/reports/ls 2001/reports/ls 2001/reports/ls 2001/reports/ 

Restaurants-Michelin/ 

 

 42

Moving files 

Now that we have properly structured our home directory, it is time to clean up unclassified files using the mvmvmvmv 

command: 

 

richard:~/archive> mv ../report[1mv ../report[1mv ../report[1mv ../report[1----4].doc reports/Restaurants4].doc reports/Restaurants4].doc reports/Restaurants4].doc reports/Restaurants----Michelin/Michelin/Michelin/Michelin/ 

 

Copying files 

Copying files and directories is done with the cpcpcpcp command. A useful option is recursive copy (copy all underlying 

files and subdirectories), using the -R option to cpcpcpcp. The general syntax is 

cp [cp [cp [cp [----RRRR] ] ] ] fromfilefromfilefromfilefromfile    tofiletofiletofiletofile  

 

Removing files 

Use the rmrmrmrm command to remove single files, rmdirrmdirrmdirrmdir to remove empty directories. (Use ls ls ls ls ----aaaa to check whether a 

directory is empty or not). The rmrmrmrm command also has options for removing non-empty directories with all their 

subdirectories, read the Info pages for these rather dangerous options. 

 



 43

8. Introduction to Shells: 

Environment variablesEnvironment variablesEnvironment variablesEnvironment variables    

We already mentioned a couple of environment variables, such as PATH and HOME. Until now, we only saw 

examples in which they serve a certain purpose to the shell. But there are many other Linux utilities that need 

information about you in order to do a good job. 

 

The environment variables are managed by the shell. As opposed to regular shell variables, environment 

variables are inherited by any program you start, including another shell. New processes are assigned a copy 

of these variables, which they can read, modify and pass on in turn to their own child processes. 

 

There is nothing special about variable names, except that the common ones are in upper case characters by 

convention. You may come up with any name you want, although there are standard variables that are 

important enough to be the same on every Linux system, such as PATH and HOME. 

 

Exporting variablesExporting variablesExporting variablesExporting variables    

An individual variable's content is usually displayed using the echoechoechoecho command, as in these examples: 

 

debby:~> echo $PATHecho $PATHecho $PATHecho $PATH 

/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin:/usr/local/bin 

 

debby:~> echo $Mecho $Mecho $Mecho $MANPATHANPATHANPATHANPATH 

/usr/man:/usr/share/man/:/usr/local/man:/usr/X11R6/man 

 

 44

In Bash, we normally do this in one elegant step: 

export export export export VARIABLEVARIABLEVARIABLEVARIABLE====valuevaluevaluevalue  

The same technique is used for the MANPATH variable, that tells the manmanmanman command where to look for compressed 

man pages. If new software is added to the system in new or unusual directories, the documentation for it will 

probably also be in an unusual directory. If you want to read the man pages for the new software, extend the 

MANPATH variable: 

 

debby:~> export MANPATH=$Mexport MANPATH=$Mexport MANPATH=$Mexport MANPATH=$MANPATH:/opt/FlightGear/manANPATH:/opt/FlightGear/manANPATH:/opt/FlightGear/manANPATH:/opt/FlightGear/man 

 

debby:~> echo $MANPATHecho $MANPATHecho $MANPATHecho $MANPATH 

/usr/man:/usr/share/man:/usr/local/man:/usr/X11R6/man:/opt/FlightGear/man 

 



 45

Reserved variables 

The following table gives an overview of the most common predefined variables: 

Table Common environment variaTable Common environment variaTable Common environment variaTable Common environment variablesblesblesbles 

Variable name    Stored information    

DISPLAY used by the X Window system to identify the display server 

DOMAIN domain name 

EDITOR stores your favorite line editor 

HISTSIZE size of the shell history file in number of lines 

HOME path to your home directory 

HOSTNAME local host name 

INPUTRC location of definition file for input devices such as keyboard 

LANG preferred language 

LD_LIBRARY_PATH paths to search for libraries 

LOGNAME login name 

MAIL location of your incoming mail folder 

MANPATH paths to search for man pages 

OS string describing the operating system 

OSTYPE more information about version etc. 

PAGER 
used by programs like man which need to know what to do in case output is more than 

one terminal window. 

PATH search paths for commands 

PS1 primary prompt 

PS2 secondary prompt 

PWD present working directory 

SHELL current shell 

TERM terminal type 

UID user ID 

USER(NAME) user name 

 46

Variable name    Stored information    

VISUAL your favorite full-screen editor 

XENVIRONMENT location of your personal settings for X behavior 

XFILESEARCHPATH paths to search for graphical libraries 

A lot of variables are not only predefined but also preset, using configuration files. 

 



 47

9. Fundamental Backup Techniques 

Accidents will happen sooner or later. In this chapter, we'll discuss how to get data to a safe place 

 

Upon completion of this chapter, you will know how to: 

• Make, query and unpack file archives 

• Handle floppy disks and make a boot disk for your system 

• Write CD-ROMs 

• Make incremental backups 

• Create Java archives 

• Find documentation to use other backup devices and programs 

• Encrypt your data 

Archiving with tarArchiving with tarArchiving with tarArchiving with tar    

In most cases, we will first collect all the data to back up in a single archive file, which we will compress later on. 

The process of archiving involves concatenating all listed files and taking out unnecessary blanks. In Linux, this is 

commonly done with the tartartartar command. tartartartar was originally designed to archive data on tapes, but it can also make 

archives, known as tarballs. 

tartartartar has many options, the most important ones are cited below: 

• -v: verbose 

• -t: test, shows content of a tarball 

• -x: extract archive 

• -c: create archive 

• -f archivedevice: use archivedevice as source/destination for the tarball, the device defaults to the 

first tape device (usually /dev/st0 or something similar) 

 48

In the example below, an archive is created and unpacked. 

 

gaby:~> ls images/ls images/ls images/ls images/ 

me+tux.jpg  nimf.jpg 

 

gaby:~> tar cvf imagestar cvf imagestar cvf imagestar cvf images----inininin----aaaa----dir.tar images/dir.tar images/dir.tar images/dir.tar images/ 

images/ 

images/nimf.jpg 

images/me+tux.jpg 

 

gaby:~> cd imagescd imagescd imagescd images 

 

gaby:~/images> tar cvf imagestar cvf imagestar cvf imagestar cvf images----withoutwithoutwithoutwithout----aaaa----dir.tar *.jpgdir.tar *.jpgdir.tar *.jpgdir.tar *.jpg 

me+tux.jpg 

nimf.jpg 

 

gaby:~/images> cdcdcdcd 

 

gaby:~> ls */*.tarls */*.tarls */*.tarls */*.tar 

images/images-without-a-dir.tar 

 

gaby:~> ls *.tarls *.tarls *.tarls *.tar 

images-in-a-dir.tar  

 

gaby:~> tar xvf imagestar xvf imagestar xvf imagestar xvf images----inininin----aaaa----dir.tar dir.tar dir.tar dir.tar  

images/ 

images/nimf.jpg 

images/me+tux.jpg 

 

gaby:~> tar tvf images/imagestar tvf images/imagestar tvf images/imagestar tvf images/images----withoutwithoutwithoutwithout----dir.tar dir.tar dir.tar dir.tar  

-rw-r--r-- gaby/gaby  42888 1999-06-30 20:52:25 me+tux.jpg 

-rw-r--r-- gaby/gaby   7578 2000-01-26 12:58:46 nimf.jpg 

 

gaby:~> tar xvf images/imagestar xvf images/imagestar xvf images/imagestar xvf images/images----withoutwithoutwithoutwithout----aaaa----dir.tar dir.tar dir.tar dir.tar  

me+tux.jpg 

nimf.jpg 



 49

 

gaby:~> ls *.jpgls *.jpgls *.jpgls *.jpg 

me+tux.jpg  nimf.jpg 

Compressing and unpacking withCompressing and unpacking withCompressing and unpacking withCompressing and unpacking with gzip or bzip2 gzip or bzip2 gzip or bzip2 gzip or bzip2    

Data, including tarballs, can be compressed using zip tools. The gzipgzipgzipgzip command will add the suffix .gz to the file 

name and remove the original file.  

 

jimmy:~> ls ls ls ls ----la | grep tarla | grep tarla | grep tarla | grep tar 

-rw-rw-r-- 1 jimmy  jimmy    61440 Jun  6 14:08 images-without-dir.tar 

 

jimmy:~> gzip imagesgzip imagesgzip imagesgzip images----withoutwithoutwithoutwithout----dir.tardir.tardir.tardir.tar  

 

jimmy:~> ls ls ls ls ----la imagesla imagesla imagesla images----withoutwithoutwithoutwithout----dir.tar.gz dir.tar.gz dir.tar.gz dir.tar.gz  

-rw-rw-r-- 1 jimmy  jimmy    50562 Jun  6 14:08 images-without-dir.tar.gz 

Uncompress gzipped files with the -d option. 

bzip2bzip2bzip2bzip2 works in a similar way, but uses an improved compression algorithm, thus creating smaller files. See the 

bzip2bzip2bzip2bzip2 info pages for more. 

Linux software packages are often distributed in a gzipped tarball. The sensible thing to do after unpacking that 

kind of archives is find the README and read it. It will generally contain guidelines to installing the package. 

The GNU tartartartar command is aware of gzipped files. Use the command 

tar tar tar tar zxvfzxvfzxvfzxvf    file.tar.gzfile.tar.gzfile.tar.gzfile.tar.gz  

for unzipping and untarring .tar.gz or .tgz files. Use 

tar tar tar tar jxvfjxvfjxvfjxvf    file.tar.bz2file.tar.bz2file.tar.bz2file.tar.bz2  

for unpacking tartartartar archives that were compressed with bzip2bzip2bzip2bzip2. 

 

 50

Using the dd command to dump dataUsing the dd command to dump dataUsing the dd command to dump dataUsing the dd command to dump data    

The dddddddd command can be used to put data on a disk, or get it off again, depending on the given input and output 

devices. An example: 

 

gaby:~> dd if=imagesdd if=imagesdd if=imagesdd if=images----withoutwithoutwithoutwithout----dir.tar.gz of=/dev/fd0H1440dir.tar.gz of=/dev/fd0H1440dir.tar.gz of=/dev/fd0H1440dir.tar.gz of=/dev/fd0H1440 

98+1 records in 

98+1 records out 

 

gaby~> dd if=/dev/fd0H1440 of=/var/tmp/images.tar.gzdd if=/dev/fd0H1440 of=/var/tmp/images.tar.gzdd if=/dev/fd0H1440 of=/var/tmp/images.tar.gzdd if=/dev/fd0H1440 of=/var/tmp/images.tar.gz 

2880+0 records in 

2880+0 records out 

 

gaby:~> ls /var/tmp/images*ls /var/tmp/images*ls /var/tmp/images*ls /var/tmp/images* 

/var/tmp/images.tar.gz 

 

 


