2010

P EFTFTAFEREVTR

T09 - Unix/Linux Fundamental



1.1 Introduction

(http://www.tldp.org/LDP/gs/node5.htmI#SECTION00500000000000000000 ).

If you're new to UNIX and Linux, you may be a bit intimidated by the size and apparent
complexity of the system before you. This chapter does not go into great detail or cover
advanced topics. Instead, we want you to hit the ground running.

We assume very little here about your background, except perhaps that you have some
familiarity with personal computer systems, and MS-DOS. However, even if you're not an MS-
DOS user, you should be able to understand everything here. At first glance, Linux looks a lot
like MS-DOS--after all, parts of MS-DOS were modeled on the CP/M operating system, which
in turn was modeled on UNIX. However, only the most superficial features of Linux resemble
MS-DOS. Even if you're completely new to the PC world, this tutorial should help.

And, before we begin: Don't be afraid to experiment. The system won't bite you. You can't
destroy anything by working on the system. Linux has built-in security features to prevent
“normal” users from damaging files that are essential to the system. Even so, the worst thing
that can happen 1s that you may delete some or all of your files and you'll have to re-install the
system. So, at this point, you have nothing to lose.

1.2 Basic Linux concepts.

Linux 1s a multitasking, multiuser operating system, which means that many people can
run many different applications on one computer at the same time. This differs from MS-DOS,
where only one person can use the system at any one time. Under Linux, to identify yourself to
the system, you must log in, which entails entering your login name (the name the system uses
to 1dentify you), and entering your password, which 1s your personal key for logging in to your
account. Because only you know your password, no one else can log in to the system under
your user name.

On traditional UNIX systems, the system administrator assigns you a user name and an initial
password when you are given an account on the system. However, because in Linux tt you are
the system administrator, you must set up your own account before you can log in. For the
following discussions, we'll use the imaginary user name, = larry."

In addition, each system has a host name assigned to it. It is this host name that gives your
machine a name, gives it character and charm. The host name is used to identify individual
machines on a network, but even if your machine isn't networked, it should have a host name.
For our examples below, the system's host name 1s ~ mousehouse".


http://www.tldp.org/LDP/gs/node5.html#SECTION00500000000000000000

1.2.1 Creating an account.

Before you can use a newly installed Linux system, you must set up a user account for
yourself. It's usually not a good idea to use the root account for normal use; you should
reserve the root account for running privileged commands and for maintaining the system as
discussed below.

In order to create an account for yourself, log in as root and use the useradd or adduser
command.

1.2.2 Logging 1n.

At login time, you'll see a prompt resembling the following:

mousehouse login:

Enter your user name and press the Enter key. Our hero, larry, would type:

mouscliomere login: lacey

Pas swcrd =

Next, enter your password. The characters you enter won't be echoed to the screen, so type
carefully. If you mistype your password, you'll see the message

Login imcorrect

and you'll have to try again.

Once you have correctly entered the user name and password, you are officially logged in to
the system, and are free to roam.

1.2.3 Virtual consoles.

The system's console 1s the monitor and keyboard connected directly to the system. (Because
Linux 18 a multiuser operating system, you may have other terminals connected to serial ports
on your system, but these would not be the console.) Linux, like some other versions of UNIX,
provides access to virtual consoles (or VCs), that let you have more than one login session on
the console at one time.

To demonstrate this, log in to your system. Next, press Alt-F2. You should see the 1ogin:
prompt again. You're looking at the second virtual console. To switch back to the first VC,
press Alt-F1. Voila! You're back to your first login session.

A newly-installed Linux system probably lets you to access only the first half-dozen or so VCs,
by pressing Alt-F1 through Alt-F4, or however many VCs are configured on your system. It 1s



possible to enable up to 12 VCs--one for each function key on your keyboard. As you can see,
use of VCs can be very powerful because you can work in several different sessions at the
same time.

While the use of VCs 1s somewhat limiting (after all, you can look at only one VC at a time), it
should give you a feel for the multiuser capabilities of Linux. While you're working on the first
VC, you can switch over to the second VC and work on something else.

1.2.4 Shells and commands.

For most of your explorations in the world of Linux, you'll be talking to the system through a
shell, a program that takes the commands you type and translates them into instructions to the
operating system. This can be compared to the COMMAND . COM program under MS-DOS, which
does essentially the same thing. A shell 1s just one interface to Linux. There are many possible
interfaces--like the XWindow System, which lets you run commands by using the mouse and
keyboard.

As soon as you log 1n, the system starts the shell, and you can begin entering commands.

Here's a quick example. Larry logs 1n and 1s waiting at the shell prompt.
mousshouse login: Larry

Pasaword: larry’s pasaword
Helcome to Mouwsehouse!

Fhomes larry#d
The last line of this text 1s the shell's prompt, indicating that it's ready to take commands.

(More on what the prompt itself means later.) Let's try telling the system to do something
Interesting:

Fhome Flarryd make lowve
make: ¥+ o way to make target ‘love’. Stop.
Jhomeflarzy$

Well, as it turns out, make 1s the name of an actual program on the system, and the shell
executed this program when given the command. (Unfortunately, the system was being
unfriendly.)

This brings us to the burning question: What 1s a command? What happens when you type
“make love"? The first word on the command line, “"make", is the name of the command to
be executed. Everything else on the command line 1s taken as arguments to this command.
Example:

fhome! larryd cp Foo bar
The name of this command 1s ~“c¢p", and the arguments are ~ foo" and ““bar".



When you enter a command, the shell does several things. First, it checks the command to see
if it 1s internal to the shell. (That is, a command which the shell knows how to execute itself.
There are a number of these commands, and we'll go into them later.) The shell also checks to
see 1f the command is an alias, or substitute name, for another command. If neither of these
conditions apply, the shell looks for a program, on disk, having the specified name. If
successful, the shell runs the program, sending the arguments specified on the command line.

In our example, the shell looks for a program called make, and runs it with the argument love.
Make 1s a program often used to compile large programs, and takes as arguments the name of a
“target” to compile. In the case of “make love", we instructed make to compile the target
love. Because make can't find a target by this name, it fails with a humorous error message,
and returns us to the shell prompt.

What happens if we type a command to a shell and the shell can't find a program having the

specified name? Well, we can try the following:
JhomeflarryP eat dirt

eak: command not Eound

Fhome{larcyh

Quite simply, if the shell can't find a program having the name given on the command line
(here, “eat"), it prints an error message. You'll often see this error message if you mistype a
command (for example, if you had typed “"mkae love" instead of “"make love").

1.2.5 Logging out.

Before we delve much further, we should tell you how to log out of the system. At the shell
prompt, use the command

Faomesf larryP exik
to log out. There are other ways of logging out, but this 1s the most foolproof one.

1.2.6 Changing your password.

You should also know how to change your password. The command passwd prompts you for
your old password, and a new password. It also asks you to reenter the new password for
validation. Be careful not to forget your password--if you do, you will have to ask the system
administrator to reset it for you. (If you are the system administrator, see page —l.)

1.2.7 Files and directories.

Under most operating systems (including Linux), there is the concept of a file, which 1s just a
bundle of information given a name (called a filename). Examples of files might be your
history term paper, an e-mail message, or an actual program that can be executed. Essentially,
anything saved on disk 1s saved in an individual file.


http://www.tldp.org/LDP/gs/node6.html�

Files are identified by their file names. For example, the file containing your history paper
might be saved with the file name history-paper. These names usually identify the file and
its contents in some form that 1s meaningful to you. There 1s no standard format for file names
as there 1s under MS-DOS and some other operating systems; in general, a file name can
contain any character (except the / character--see the discussion of path names, below) and 1s
limited to 256 characters in length.

With the concept of files comes the concept of directories. A directory is a collection of files.
It can be thought of as a ~“folder" that contains many different files. Directories are given
names, with which you can identify them. Furthermore, directories are maintained in a tree-
like structure; that is, directories may contain other directories.

Consequently, you can refer to a file by its path name, which is made up of the filename,
preceded by the name of the directory containing the file. For example, let's say that Larry has
a directory called papers, which contains three files: history-final, english-11t, and
masters-thesis. Each of these three files contains information for three of Larry's ongoing
projects. To refer to the english-11t file, Larry can specify the file's pathname, as in:

paperafenglish—-lit

As you can see, the directory and filename are separated by a single slash (/). For this reason,
filenames themselves cannot contain the / character. MS-DOS users will find this convention
familiar, although in the MS-DOS world the backslash (\) is used instead.

As mentioned, directories can be nested within each other as well. For example, let's say that
there 1s another directory within papers, called notes. The notes directory contains the files
math-notes and cheat-sheet. The pathname of the file cheat-sheet would be

paperafnotea focheat—ahest

Therefore, a path name 1s really like a path to the file. The directory that contains a given
subdirectory 1s known as the parent directory. Here, the directory papers is the parent of the
notes directory.

1.2.8 The directory tree.

Most Linux systems use a standard layout for files so that system resources and programs
can be easily located. This layout forms a directory tree, which starts at the ~ /" directory, also
known as the ~root directory". Directly underneath / are important subdirectories: /bin, /etc,
/dev, and /usr, among others. These directories in turn contain other directories which
contain system configuration files, programs, and so on.

In particular, each user has a home directory, which 1s the directory set aside for that user to
store his or her files. In the examples above, all of Larry's files (like cheat -sheet and
history-final) are contained in Larry's home directory. Usually, user home directories are
contained under /home, and are named for the user owning that directory. Larry's home
directory 1s /home/larry.



The diagram on page —I shows a sample directory tree, which should give you an idea of how
the directory tree on your system 18 organized.

=1.0pt
f—bin
—dav
—erc
—bome —El:
—13h
Zlf_;‘
—uy — —Kll 1RS
— 3G
— s
— gH--ixluds
—Iinchuds
—lih
—local bin
RS
Eﬂi
lib
—mal
—m .

Figure 1.1: A typical (abridged) Linux directory tree.

1.2.9 The current working directory.

At any moment, commands that you enter are assumed to be relative to your current
working directory. You can think of your working directory as the directory in which you are
currently ~located". When you first log in, your working directory is set to your home
directory--/home/larry, in our case. Whenever you refer to a file, you may refer to it in
relationship to your current working directory, rather than specifying the full pathname of the
file.

Here's an example. Larry has the directory papers, and papers contains the file history-
final. If Larry wants to look at this file, he can use the command

Fhaomeflarrr} more fhomeflarry/paperafEiatory—Einal

The more command simply displays a file, one screen at a time. However, because Larry's
current working directory 1s /home/larry, he can instead refer to the file ze/ative to his
current location by using the command

FhomeFlarry} more papera/Liatory—Einal

If you begin a filename (like papers/final) with a character other than /, you're referring to
the file in terms relative to your current working directory. This 1s known as a relative path
name.


http://www.tldp.org/LDP/gs/node5.html�

On the other hand, if you begin a file name with a /, the system interprets this as a full path
name--that 1s, a path name that includes the entire path to the file, starting from the root
directory, /. This 18 known as an absolute path name.

1.2.10 Referring to home directories.

Under both tcsh and bashw you can specify your home directory with the tilde character
(~). For example, the command

Fhomef larry® more “fpaperafhiatory—Einal
1S equivalent to

Fhawomeflarry} more fhomef larry/papersafEiatory—Einal
The shell replaces the ~ character with the name of your home directory.

You can also specify other user's home directories with the tilde character. The pathname
~karl/letters translates to /home/karl/letters by the shell (if /home/kar] is karl's
home directory). Using a tilde 1s simply a shortcut; there 1s no directory named ~--1t's just
syntactic sugar provided by the shell.

1.3 First steps into Linux.

Before we begin, 1t 1s important to know that all file and command names on a Linux system
are case-sensitive (unlike operating systems such as MS-DOS). For example, the command
make 1s very different from Make or MAKE. The same 1s true for file and directory names.

1.3.1 Moving around.

Now that you can log in, and you know how to refer to files using pathnames, how can you
change your current working directory, to make life easier?

The command for moving around in the directory structure is cd, which 18 short for ““change
directory”. Many often-used Linux commands are two or three letters. The usage of the cd
command 13
od cifeckay
where directory is the name of the directory which you wish to become the current working
directory.

As mentioned earlier, when you log 1n, you begin in your home directory. If Larry wanted to

switch to the papers subdirectory, he'd use the command
FfwomeS larryd ol papera

Fuwwef larryfpaperal
As you can see, Larry's prompt changes to reflect his current working directory (so he knows

where he 1s). Now that he's in the papers directory, he can look at his history final with the


http://www.tldp.org/LDP/gs/footnode.html�

command
Fhome Flarry/paperad more hiatory—-Einal

Now, Larry 1s stuck in the papers subdirectory. To move back up to the next higher (or

parent) directory, use the command
fhome! larry /paperad od

Fhomes larryh
(Note the space between the ““cd" and the **. .".) Every directory has an entry named ~. ."

which refers to the parent directory. Similarly, every directory has an entry named ~ ." which
refers to itself. Therefore, the command

Fhomeflarry/paperald cd
gets us nowhere.

[N

You can also use absolute pathnames with the cd command. To cd into Karl's home directory,

we can use the command
fhome/ lacry/paperal od /home/kazl

Fhomc f kaxc1k

Also, using c¢d with no argument will return you to your own home directory.
Fhomefkarld od

Fhomeflarc T

1.3.2 Looking at the contents of directories.

Now that you know how to move around directories, you might think, ~~So what?" Moving
around directories 1s fairly useless by itself, so let's introduce a new command, 1s. The 1s
command displays a listing of files and directories, by default from your current directory. For
example:

FhomeSlarry$ la
Mail
letbtera

popreTa
Fhomerlarcy®

Here we can see that Larry has three entries in his current directory: Mail, letters, and
papers. This doesn't tell us much--are these directories or files? We can use the -F option of
the 18 command to get more detailed information.



/homeflarrvlh s ——F

Mails

letterea/

papecal

/homeflarryd

From the / appended to each filename, we know that these three entries are in fact
subdirectories.

Using 1s -F may also append ~ *" to the end of a filename in the resulting list which would
indicate that the file i1s an executable, or a program which can be run. If nothing is appended to
the filename using 1s -F, the file 1s a ~“plain old file", that 1s, it's neither a directory nor an
executable.

In general, each UNIX command may take a number of options in addition to other arguments.
These options usually begin with a **-", as demonstrated above with the -F option. The -F
option tells 1s to give more information about the type of the files involved--in this case,
printing a / after each directory name.

If you give 1s a directory name, the system will print the contents of that directory.
home/larryd la —T papers

english-l1it
history-final
masters—thesin
notea/f
Fhome/1arxyd

Or, for a more interesting listing, let's see what's in the system's /etc directory.

J/homeSflarryd la fetc

InagEs Ctpisera 1pc . W ahells

mdm gqatzy magic o] . d startcons
boheckrs get - ydeFs makd rcl.d swapaFF

b o Orap moank rcd .d oW apOn

bcc”™ ez mbsh rcl.d sy=log.conk
csh.cshec Iniz mtools red .d avaloqg.pid
cwh.login iniz.d pac rch . d syslows  ralosd
deFaulk inizrualvl paaswd ot e rmeap

di akt.ab iniztab printcap pc mmorcnk
Epra iniztah.ald proEile rpcinfo mpdebe
Fatasn Lase padat ahare securetLy atmp
Epa~cans Lila e Serviocss wbmp
Jhome/flarryd

10



If you're a MS-DOS user, you may notice that the filenames can be longer than 8 characters,
and can contain periods in any position. You can even use more than one period in a filename.

Let's move to the top of the directory tree, and then down to another directory with the
commands

fhomef larryd od ..
fhomed cod ..

f# od usr

Fusrd od bin

fuxrhind
You can also move into directories in one step, as in cd /usr/bin.

Try moving around various directories, using 1s and cd. In some cases, you may run into the
foreboding “"Permission denied" error message. This is simply UNIX security kicking in:
n order to use the 1s or cd commands, you must have permission to do so. We talk more
about this starting on  page .

1.3.3 Creating new directories.

It's time to learn how to create directories. This involves the use of the mkd1r command. Try
the following:

/homeflarzyh mkdir Zoo
Jhome flarryh Lla -IF
Mail/s

Eoalf

letbersf

pagrers f

/homeflarryh cd Zoo
Jhome/larrySfFood la
Jhome flarryf Eool

Congratulations! You made a new directory and moved into it. Since there aren't any files in
this new directory, let's learn how to copy files from one place to another.

1.3.4 Copying files.

To copy files, use the command cp, as shown here:

11


http://www.tldp.org/LDP/gs/node5.html�

Fhome/ larry/Foob cp fetc/termcap
fhome! larry ffoob cp febtc/ahella
fhome! larry/Ffook la —F

ahells termcap

Fhome! larry/Ffool cp shells bells
fhome! larry/Ffook la —F

bella ahella Lermcap
Fhomef larry f ool

The ¢p command copies the files listed on the command line to the file or directory given as

N

the last argument. Notice that we use ~." to refer to the current directory.

1.3.5 Moving files.

The mv command moves files, rather than copying them. The syntax is very straightforward:

Fhomeflarry/Ecod mv termcap asella
Jhomeflarry/fonk 1la -F

bells aells ahells
FhomeflarryfEood

Notice that the termcap file has been renamed sells. You can also use the mv command to
move a file to a completely new directory.

Note: mv and cp will overwrite a destination file having the same name without asking you. Be
careful when you move a file into another directory. There may already be a file having the
same name 1in that directory, which you'll overwrite!

1.3.6 Deleting files and directories.

You now have an ugly rhyme developing with the use of the 1s command. To delete a file,
use the rm command, which stands for ~“remove", as shown here:

home/larry/food rm be’ls ae’ls
Fhome /larry/ food 1a -TF

shella

Fhome flarxryf fook

We're left with nothing but shells, but we won't complain. Note that rm by default won't
prompt you before deleting a file--so be careful.

12



A related command to rmis rmdir. This command deletes a directory, but only if the
directory 1s empty. If the directory contains any files or subdirectories, rmdir will complain.

1.3.7 Looking at files.

The commands more and cat are used for viewing the contents of files. more displays a file,
one screenful at a time, while cat displays the whole file at once.

To look at the file shells, use the command
Fhome flarry/ Eool more shellas

In case you're interested what shells contains, it's a list of valid shell programs on your
system. On most systems, this includes /bin/sh, /bin/bash, and /bin/csh. We'll talk about
these different types of shells later.

While using more, press Space to display the next page of text, and b to display the previous
page. There are other commands available in more as well, these are just the basics. Pressing q
will quit more.

Quitmore and try cat /etc/termcap. The text will probably fly by too quickly for you to
read it all. The name ““cat" actually stands for ~“concatenate", which is the real use of the
program. The cat command can be used to concatenate the contents of several files and save
the result to another file. This will be again 1n section 1.14.1.

1.3.8 Getting online help.

Almost every UNIX system, including Linux, provides a facility known as manual pages.
These manual pages contain online documentation for system commands, resources,
configuration files and so on.

The command used to access manual pages 1s man. If you're interested in learning about other
options of the 1s command, you can type

Fawmeflarryd man la
and the manual page for 1s will be displayed.

Unfortunately, most manual pages are written for those who already have some 1dea of what
the command or resource does. For this reason, manual pages usually contain only the
technical details of the command, without much explanation. However, manual pages can be
an invaluable resource for jogging your memory if you forget the syntax of a command.
Manual pages will also tell you about commands that we don't cover in this book.

I suggest that you try man for the commands that we've already gone over and whenever |

introduce a new command. Some of these commands won't have manual pages, for several
reasons. First, the manual pages may not have been written yet. (The Linux Documentation

13


http://www.tldp.org/LDP/gs/node5.html#secshellscript

Project 18 responsible for manual pages under Linux as well. We are gradually accumulating
most of the manual pages available for the system.) Second, the the command might be an
internal shell command, or an alias (discussed on page —I), which would not have a manual
page of its own. One example 1s c¢d, which 1s an internal shell command. The shell itself
actually processes the cd--there 1s no separate program that implements this command.

Accessing MS-DOS files.

If, for some twisted and bizarre reason, you want to access files from MS-DOS, it's easily
done under Linux.

The usual way to access MS-DOS files 1s to mount an MS-DOS partition or floppy under
Linux, allowing you to access the files directly through the file system. For example, if you
have an MS-DOS floppy in /dev/fd0, the command

8 mounk —F m=dns fdawvSFdll fmnlk
will mount it under /mnt. See Section4.8.4 for more information on mounting floppies.

You can also mount an MS-DOS partition of your hard drive for access under Linux. If you
have an MS-DOS partition on /dev/hdal, the command

# moantk —+ mados Sfdew/hda™ Sfonk

mounts it. Be sure to umount the partition when you're done using it. You can have a MS-
DOS partition automatically mounted at boot time if you include the entry in /etc/fstab.
See Section4.4 for details. The following line in /etc/fstab will mount an MS-DOS
partition on /dev/hdal on the directory /dos.

Fdew fhalal Fdos mac.on deFmullbn

You can also mount the VFAT file systems that are used by Windows 95:

# monnk —t wEak Sfdew flelnal fmnk

This allows access to the long filenames of Windows 95. This only applies to partitions that
actually have the long filenames stored. You can't mount a normal FAT16 file system and use
this to get long filenames.

The Mtools software may also be used to access MS-DOS files. The commands med, mdir,
and mcopy all behave like their MS-DOS counterparts. If you install Mtools, there should be
manual pages available for these commands.

Accessing MS-DOS files 18 one thing; running MS-DOS programs 1s another. There 1s an
MS-DOS Emulator under development for Linux; it 1s widely available, and included in most
distributions. It can also be retrieved from a number of locations, including the various Linux
FTP sites listed in AppendixB. The MS-DOS Emulator 1s reportedly powerful enough to run a
number of applications, including WordPerfect, from Linux. However, Linux and MS-DOS are
vastly different operating systems. The power of any MS-DOS emulator under UNIX is
limited. In addition, a Microsoft Windows emulator that runs under XWindows is under
development.

14


http://www.tldp.org/LDP/gs/node5.html�
http://www.tldp.org/LDP/gs/node6.html#secfloppy
http://www.tldp.org/LDP/gs/node6.html#secmanagefs
http://www.tldp.org/LDP/gs/app-ftp/node1.html

1.5 Summary of basic UNIX commands.

This section introduces some of the most useful basic commands of a UNIX system, including
those that are covered in the previous section.

Note that options usually begin with *"-", and in most cases you can specify more than one
option with a single **-". For example, rather than use the command 1s -1 -F, you can use
Is -1F.

Rather than listing every option for each command, we only present useful or important
commands at this time. In fact, most of these commands have many options that you'll never
use. You can use man to see the manual pages for each command, which list all of the
available options.

Also note that many of these commands take as arguments a list of files or directories, denoted
in this table by " 7z/e/ ...f1leN". For example, the cp command takes as arguments a list of files
to copy, followed by the destination file or directory. When copying more than one file, the
destination must be a directory.

15



Symax: od direclory

Where directory i the directory which you want vo changa to. (*."
pafers to the current directory, “ . .™ the parant directory. If no directocy
ia i specified it dafaulrs you your home directory.)

Example: ed . ./ foo sera the currant direcvory up one level, then backc
down o foo.

Display: information about the namead filea and directorios.

Symax: 13 files

Where firs consists of the the filsnames or directories to list. The most
commoanly used options are —F (to display the file typea), and —1 (o give
a “long”™ listing Including fils size, owner, pamissions, and 30 og).
Example: 13 —1F /home/larry displays the cootants of the direc-
tory /home/larry.

Copias one or more fils to another file or direcracy.

Where files lises the files to copy, and destinstion is the destination file
or directary.

Example: cp ../frog joe copies thefile . ./frog two the file or
direcrory {oe.

Mowes ooe or mors fils to another file or directory. This command doss
the equivalant of a copy fallowead by the dalerion of the original fils. You
can usa this to rename filss, Bos in e MS -DOS command REWNAME.
Whexe files Lists the files to maows, and destinstion is the destinarion file
or directary.

Example: mv . ./ frog joe moves the file . . /frog w the fils or
direcrory joe.

Daletas filss. Naote tha when you dalare a fils under [INIX, they am un-
recaverabls (unlfcs MS-DOS, whars you can usually “undalevs™ vhe fi bs).
Syoax: rm fikes

Whexe files dascribes the filanames to daleve.

The —1 option prompts for confirmation bafore daleting thefile.
Ezample: rm -1 /home/larry/joe /home/larry/frog
dalwss tha filss joe and frogq in /home flarry.

Croates new directorios.
Syoax: mkdilr dia
YWhere dirs are the directorios to croate.,

16



1.6 Exploring the file system.

A file system 1s the collection of files and the hierarchy of directories on a system. The time
has now come to escort you around the file system.

You now have the skills and the knowledge to understand the Linux file system, and you have
a roadmap. (Refer to diagram on page ).

First, change to the root directory (cd /), and then enter 1s -F to display a listing of its
contents. You'll probably see the following directories~: bin, dev, etc, home, install, 11b,
mnt, proc, root, tmp, user, usr, and var.

Now, let's take a look at each of these directories.

17


http://www.tldp.org/LDP/gs/node5.html�
http://www.tldp.org/LDP/gs/footnode.html�

/oin

fdew

/bin is sher for “binaries™, or executables, where many eszential sya-
tam programa rexide. Use 1s -F /bin to lint the fils hae. If you
look down the hxt you may sec a fow commands tat you recognize,
mch as cp, 1s, and mv. Thkese are he actual programs for these com-
mards. When you use the cp commend, f or exarr ple, you're mmning the
prograrc /bin/cp.

Using 15 -F, you'll see thet moxt (if not all) of the filea In /bin hzve
an aterak (™) appanded to their filsnames. This indicates that the files
are emscutables, as described on page 140.

The “fils™ In /dev are device flles—thoy access system devices and
reacurces ke disk drives, modama, aad meamery. Just as your rysan can
reac dam frem afile, it can also read input from the mouse by accesxing
/dev/mousze.

Filenames that begin wh fd are floppy disk devices. £d0 is the first
flopoy disk crive, and £d1 isthe second. Youmay hawe ncticed that there
are more floppy disk dovices thezn the two linted abowe: these represant
specific types of floppy disks. For exanmple, £A1H1440 acces sen high-
den iy, 3.5" diskotes In drive 1.

Thefollowng iz a list of some of the mcst commonly used devics files.
Ewem thougt you may not have some of the plyxical devices I nedbelcw,
chances are hat you'll have drivers In / dev for them anyway.

e /dew/consol e mfen tothe rystem's coniole—that s, the men-
itor commectad directly o your systam.

o The vadous /dev/ttyS md /dev/cua devices areused for ac-
cesying sarial ports. /dev/ttyS) reers to “COML™ nnder MS-
DOS. The /dev /cna devices are “callout”™ dewices, and used with
arodamn.

s Device namss Saginming with hd 2ccess herd criwes. /dev/hda
refers to the whole first hard disk, while /dewv/hdal nefers to the
first pagrtitton oo /dev/ hda.

s Device namea that bagin with 2d mme SCSI drrves. If you have a
SCSI hard drive, instezd of accesxing I through /dev/hda, you
would acceas /dev/sda tEpes are acceased via st devices,
and SCST (D-ROM via sr davices

s Devicenames thar begh with 1p access parallel pora. /dev/1p0
ia the same a3 “LPT1™in the ME-DOS word.

s fdewv/nnll i3 used a1 3 “black hele™dsrs sant to this device is
e forewer. Whris rhis reeful? Rl 3F vyou wamed o e

18



The various directories described above are essential for the system to operate, but most of the
items found in /usr are optional. However, it 1s these optional items that make the system
useful and interesting. Without /usr, you'd have a boring system that supports only programs
like cp and 1s. /usr contains most of the larger software packages and the configuration files
that accompany them.

19



fuor/X11R6

fusr/bin

fusr/fetc

Juor /¥X11R6 cootnins The X Window System, if you installed . The
X Window Systeam 11 a large. powerful grapinecal eovxronment that pro-
vides a larges mumber of graplrical unlities and programs, displayed in
“windowa™ oo your saean. If you're & all Eamiliar with the Miaosoft
Windows or Macintosh environments, X Windows will look famibiar
The fusr/xL1H6 dirscrory containy all of the X Windows axscura-
blca, coofiguration filca, and support filcs. This is covcred in morc detail
o Chaptex 1.

fusr /binisthe real warshouse for sofiware oo oy Liou x systam, con-
mng maost of the execuables for programs oot found 10 othar places,
lils /bin.

Just a1 /etc contaim exsential oy cellaneous system programs and con-
figuradon file, /fusr/ecc comainy mixcallaneous urdlies and flles,
that in general, are oot seseotial vo the system.

Jusr/include

fusr/include comains indnde files for s C compller These files
(moat of which snd in .h, for "haoder™) declore dova sructurs nomss,
subroutine, and constants used when writing programas in €. Files in
fusr/include/sys am ganarally used when programming on the
[NIX systam leval. K you sre fmilisr with the C programming lan-
guaga, bare you®ll find beader files like stdi 0. h, which declare func-
Hom Hesprincr().

fusr/gri—include

fusr/1ib

Jusr/local

fusr/man

fusr/g+i—include commima includs filsa for the CH+ compilar
{muchlicee fusr/include).

fusr/11b conmmns the “sub”™ and “watic™ hibrary equivalenty for the
filos found in /1 i b. When compiling a program, the program is “linked™
with the librariss found in fus r /1 ib, which then directs the program
w Jook i /1 10 wiss it peexls des actwal cocs i e lileacy. Tu ackdiion,
various other programa sors configurarion files in /fusr/11b.

fusrc/local is much lice /usr—it containy various programa and
flles not easential to the syatam, but which malos the sysam fun and ax-
aing. In ganam|, progroms in /uar/loaal are specializad for your
sysem—comequently, fusr/local differs grealy between Limx
Tymoms,

m it for every mamal pags “secnon™ (uss thes coommand man man

20



1.7 Types of shells.

As mentioned before, Linux 1s a multitasking, multiuser operating system. Multitasking 1s
very useful, and once you understand it, you'll use it all of the time. Before long, you'll run
programs 1n the background, switch between tasks, and pipeline programs together to achieve
complicated results with a single command.

Many of the features we'll cover in this section are features provided by the shell itself. Be
careful not to confuse Linux (the actual operating system) with a shell--a shell 1s just an
Interface to the underlying system. The shell provides functionality inaddition to Linux itself.

A shell i1s not only an interpreter for the interactive commands you type at the prompt, but
also a powerful programming language. It lets you to write shell scripts, to ~“batch" several
shell commands together in a file. If you know MS-DOS you'll recognize the similarity to
““batch files". Shell scripts are a very powerful tool, that will let you automate and expand your
use of Linux. See page | for more information.

There are several types of shells in the Linux world. The two major types are the ~~Bourne
shell" and the ~“C shell". The Bourne shell uses a command syntax like the original shell on
early UNIX systems, like System III. The name of the Bourne shell on most Linux systems 1s
/bin/sh (where sh stands for ““shell"). The C shell (not to be confused with sea shell) uses a
different syntax, somewhat like the programming language C, and on most Linux systems 1s
named /bin/csh.

Under Linux, several variations of these shells are available. The two most commonly
used are the Bourne Again Shell, or “"Bash" ( /bin/bash), and “Tcsh" (/bin/tcsh). bash
18 a form of the Bourne shell that includes many of the advanced features found in the C shell.
Because bash supports a superset of the Bourne shell syntax, shell scripts written in the
standard Bourne shell should work with bash. If you prefer to use the C shell syntax, Linux
supports tcsh, which i1s an expanded version of the original C shell.

The type of shell you decide to use 1s mostly a religious 1ssue. Some folks prefer the Bourne
shell syntax with the advanced features of bash, and some prefer the more structured C shell
syntax. As far as normal commands such as cp and 1s are concerned, the shell you use doesn't
matter--the syntax is the same. Only when you start to write shell scripts or use advanced
features of a shell do the differences between shell types begin to matter.

As we discuss the features of the various shells, we'll note differences between Bourne and C
shells. However, for the purposes of this manual most of those differences are minimal. (If
you're really curious at this point, read the man pages for bash and tcsh).

21


http://www.tldp.org/LDP/gs/node5.html�

1.8 Wildcards.

A key feature of most Linux shells 1s the ability to refer to more than one file by name using
special characters. These wildcards let you refer to, say, all file names that contain the

n

character * n".

The wildcard ~**" specifies any character or string of characters in a file name. When you use
the character " *" 1n a file name, the shell replaces it with all possible substitutions from file
names in the directory you're referencing.

Here's a quick example. Suppose that Larry has the files frog, joe, and stuff in his current

directory.
FhomeSflarry$ La

Erog Joue staEE
Ffhom=rflarcyi

To specify all files containing the letter 0" in the filename, use the command
Frome flarred 1a ot

Frogg joe

Facme /larxvd

As you can see, each instance of ~ *" 1s replaced with all substitutions that match the wildcard
from filenames in the current directory.

The use of ™ *" by itself simply matches all filenames, because all characters match the

wildcard.
ShomeS larryd 1s *

Epnouy Jouu stnEE
Fhomef larecyP

Here are a few more examples:
Jhome/laczyh 1w E*

froq

Jhomeflarryh 1l=a *EE
Etuff

Thome/laczyP la *E*
£Frog atufFEF
JhomeFlarry® la at*E
=tufFE

Thome/larzyP

The process of changing a ~**" into a series of filenames is called wildcard expansion and 1s
done by the shell. This 1s important: an individual command, such as 1s, zeversees the ~*" in
its list of parameters. The shell expands the wildcard to include all filenames that match. So,
the command

Fawmeflarryd la Saob

22



18 expanded by the shell to
Fhomeflarry} _a [rog jom

One 1mportant note about the ~ *" wildcard: it does zof match file names that begin with a
single period (."). These files are treated as hidden files--while they are not really hidden,
they don't show up on normal 1s listings and aren't touched by the use of the ~™*" wildcard.

N

Here's an example. We mentioned earlier that each directory contains two special entries:
refers to the current directory, and ~ . ." refers to the parent directory. However, when you use

1 s, these two entries don't show up.
Fhomef larry® La

Eroy Jou atnFF

Fhomef lareyB

If you use the -a switch with 1s, however, you can display filenames that begin with ™ .".
Observe:

Fhome/larry$ la -a

. ws .bash profile .bashrc frog jom

atuff

Fhome /larrré

n AN

The listing contains the two special entries, —." and ~— ..", as well as two other ~hidden"
files--.bash_profile and .bashrc. These two files are startup files used by bash when
larry logs in. They are described starting on page .

Note that when you use the **" wildcard, none of the filenames beginning with ~." are

displayed.

Jhome’larcyh Iz *

Eroq Jou atnFF

Fhomef larcyP

This 1s a safety feature: if the ~*" wildcard matched filenames beginning with ™. ", it would

n (NN

also match the directory names ~." and ~. .". This can be dangerous when using certain

commands.

Another wildcard 1s *?". The 7" wildcard expands to only a single character. Thus, " 1s ?"
displays all one-character filenames. And ~"1s termca?" would display ~termcap" but not

“termcap.backup". Here's another example:
HNomeflarryd 8 17

Jou

HNomeflarryd “a [77q
Erog

fomeflarcyd _a 1?71E
a-ufE

Fomeflarcyd

As you can see, wildcards lets you specify many files at one time. In the command summary
that starts on page —, we said that the cp and mv commands actually can copy or move more
than one file at a time. For example,

23


http://www.tldp.org/LDP/gs/node5.html�
http://www.tldp.org/LDP/gs/node5.html�

Jhomet larryP cp fetc/a* /homel/larry
copies all filenames in /etc beginning with " s" to the directory /home/larry. The format of

the cp command 1s really

cp Hky doatination

where fi/es lists the filenames to copy, and destination 1s the destination file or directory. mv
has an 1dentical syntax.

If you are copying or moving more than one file, the destination must be a directory. You can
only copy or move a single file to another file.

1.9 Linux plumbing.

1.9.1 Standard input and standard output.

Many Linux commands get input from what 1s called standard input and send their output to
standard output (often abbreviated as stdin and stdout). Your shell sets things up so that
standard 1nput 1s your keyboard, and standard output 1s the screen.

Here's an example using the cat command. Normally, cat reads data from all of the files
specified by the command line, and sends this data directly to stdout. Therefore, using the
command

Faomef larry/pape=ald cat h-astory-Einal masters—theaia
displays the contents of the file history-final followed by masters-thesis.

However, if you don't specify a filename, cat reads data from stdin and sends it back to

stdout. Here's an example:
MemeFlace ¢fppaprc-u ¥ cal

Hello Ewars.
Hello Ehere,
Bye.
Bye.
shome/larcy pape=ad
Each line that you type 1s immediately echoed back by cat. When reading from standard
input, you indicate the input 1s * finished" by sending an EOT (end-of-text) signal, in general,
generated by pressing Ctrl-D.

Here's another example. The sort command reads lines of text (again, from stdin, unless you
specify one or more filenames) and sends the sorted output to stdout. Try the following.

24



Jhomat larry /papacsh sorck
bananas

carrot s

apples

[cez=-o]

gl

bananas

carrolt s

Fhomef larry fpapecad
Now we can alphabetize our shopping list... 1sn't Linux useful?

1.9.2 Redirecting input and output.

Now, let's say that you want to send the output of sort to a file, to save our shopping list
on disk. The shell lets you redirect standard output to a filename, by using the ~*>" symbol.

Here's how it works:
Fheme flnrry/papevsd sort > shepping-list

banana=
carxots

| Ctr_—-D

Jhome flarry/papera $

As you can see, the result of the sort command isn't displayed, but is saved to the file named
shopping-1list. Let's look at this file:

FThome!/ larry/papecald cat shopping—-l-at

apples

bananas

carrots

Fhome s larry fpapecad

Now you can sort your shopping list, and save it, too! But let's suppose that you are storing the
unsorted, original shopping list in the file 1 tems. One way of sorting the information and
saving it to a file would be to give sort the name of the file to read, in lieu of standard input,

and redirect standard output as we did above, as follows:
Jhome Flarry/paperad sort items > shopping—list

Jhome Flarry/paperal catk shopping-list
applea
bananas
carroks

FThome/larcy/papecad
However, there's another way to do this. Not only can you redirect standard output, you can

N

redirect standard znput as well, using the <" symbol.

25



Jhome! larry /paparsd sort « ibems

app les

bananas

carrots

fhome/ larrvy /paperad

Technically, sort < 1tems is equivalent to sort 1tems, but lets you demonstrate the
following point: sort < 1tems behaves as if the data in the file 1 tems was typed to standard
input. The shell handles the redirection. sort wasn't given the name of the file (1 tems) to read;
as far as sort 1s concerned, it still reads from standard input as if you had typed the data from
your keyboard.

This introduces the concept of a filter. A filter is a program that reads data from standard
Input, processes 1t in some way, and sends the processed data to standard output. Using
redirection, standard input and standard output can be referenced from files. As mentioned
above, stdin and stdout default to the keyboard and screen respectively. sort 1s a simple
filter. It sorts the incoming data and sends the result to standard output. cat 1s even simpler. It
doesn't do anything with the incoming data, 1t simply outputs whatever 1s given to it.

1.9.3 Using pipes.

We already demonstrated how to use sort as a filter. However, these examples assume that
you have data stored in a file somewhere or are willing to type the data from the standard input
yourself. What if the data that you wanted to sort came from the output of another command,
like 1s?

The -r option to sort sorts the data in reverse-alphabetical order. If you want to list the files

n your current directory in reverse order, one way to do it is follows:
JhomeFlarry/pmgreral la

english-liak
history-Einal
masters—-theais

notes
Now redirect the output of the 1s command into a file called file-11st:
Fhome/flarry/paperald la > Eile—liat

Fhome!larry/paperad so-t -r File-liat

el ez

masteras-theais

history-Einal

english-list

Fhomef larry fpapecad

Here, you save the output of 1s in a file, and then run sort -r on that file. But this 1s
unwieldy and uses a temporary file to save the data from 1s.

The solution is pipelining. This is a shell feature that connects a string of commands via a
“pipe.” The stdout of the first command is sent to the stdin of the second command. In this

26



LN

case, we want to send the stdout of 1s to the stdin of sort. Use the ™ |" symbol to create a

pipe, as follows:
fhome/larry/paperad la | sort —x

notes

masters—-thesais

history-Final

english-list
Jhomeflarry/paperal

This command 1s shorter and easier to type.

Here's another useful example, the command

Fwomef larryfpaperad 1la fuarfbin

displays a long list of files, most of which fly past the screen too quickly for you to read. So,
let's use more to display the list of files in /usr/bin.

fhome /larry/papersa$ 1s /usr/kbin | mexe

Now you can page down the list of files at your leisure.

But the fun doesn't stop here! You can pipe more than two commands together. The command
head 1s a filter that displays the first lines from an nput stream (in this case, input from a
pipe). If you want to display the last filename in alphabetical order in the current directory, use
commands like the following:

fhome /larry/paper=é 1= | sort —r | head -1

notes

Fhome /larxry/papecsd
where head -1 displays the first line of input that it receives (in this case, the stream of
reverse-sorted data from 1s).

Non-destructive redirection of output.

Using “*>" to redirect output to a file 1s destructive: in other words, the command

Jhomeflarryfpaperak 1a > Eile=list

overwrites the contents of the file file-11st. If instead, you redirect with the symbol " >>",
the output 1s appended to (added to the end of) the named file instead of overwriting it. For
example,

fhomes lacry/paperad la >>» Eile—liat
appends the output of the 1s command to file-1list.

Keep 1in mind that redirection and pipes are features of the shell--which supports the use of ~>",
“>>"and T ", It has nothing to do with the commands themselves.

1.10 File permissions.

27



1.10.1 Concepts of file permissions.

Because there 15 typically more than one user on a Linux system, Linux provides a
mechanism known as file permissions, which protect user files from tampering by other users.
This mechanism lets files and directories be ~“owned" by a particular user. For example,
because Larry created the files in his home directory, Larry owns those files and has access to
them.

Linux also lets files be shared between users and groups of users. If Larry desired, he could cut
off access to his files so that no other user could access them. However, on most systems the
default 1s to allow other users to read your files but not modify or delete them in any way.

Every file 1s owned by a particular user. However, files are also owned by a particular group,
which is a defined group of users of the system. Every user is placed into at least one group
when that user's account is created. However, the system administrator may grant the user
access to more than one group.

Groups are usually defined by the type of users who access the machine. For example, on a
university Linux system users may be placed into the groups student, staff, faculty or
guest. There are also a few system-defined groups (like bin and admin) which are used by
the system 1tself to control access to resources--very rarely do actual users belong to these
system groups.

Permissions fall into three main divisions: read, write, and execute. These permissions may be
granted to three classes of users: the owner of the file, the group to which the file belongs, and
to all users, regardless of group.

Read permission lets a user read the contents of the file, or in the case of directories, list
the contents of the directory (using 1s). Write permission lets the user write to and modify the
file. For directories, write permission lets the user create new files or delete files within that
directory. Finally, execute permission lets the user run the file as a program or shell script (if
the file 1s a program or shell script). For directories, having execute permission lets the user cd
into the directory in question.

1.10.2 Interpreting file permissions.

28



Let's look at an example that demonstrates file permissions. Using the 1s command with the

-1 option displays a ““long" listing of the file, including file permissions.
FfromeflarryfEool la —1 atuEE

—N-r—— L larxy users 50 Mexr 13 19:05 stukEl

Faomerlareyf Eool

The first field in the listing represents the file permissions. The third field 1s the owner of the
file (1arry) and the fourth field 13 the group to which the file belongs (users). Obviously, the
last field 18 the name of the file (stuff). We'll cover the other fields later.

This file i1s owned by larry, and belongs to the group users. The string - rw-r-r- lists, in
order, the permissions granted to the file's owner, the file's group, and everybody else.

~n ~n

The first character of the permissions string (" -") represents the type of file. A~ -" means that
this 1s a regular file (as opposed to a directory or device driver). The next three characters

(" rw-") represent the permissions granted to the file's owner, larry. The " r" stands for
“read" and the ~w" stands for “write". Thus, larry has read and write permission to the file
stuff.

As mentioned, besides read and write permission, there 18 also = execute" permission--
represented by an ~x". However, a X"

N

18 listed here in place of an X", so Larry doesn't have
execute permission on this file. This is fine, as the file stuff isn't a program of any kind. Of
course, because Larry owns the file, he may grant himself execute permission for the file if he
so desires. (This will be covered shortly.)

The next three characters, (" r-"), represent the group's permissions on the file. The group that
owns this file 1S users. Because only an ~r" appears here, any user who belongs to the group
users may read this file.

The last three characters, also (" r-"), represent the permissions granted to every other user on
the system (other than the owner of the file and those in the group users). Again, because

\Non

only an ~"r" 1s present, other users may read the file, but not write to it or execute it.

Here are some other examples of permissions:
—rwxr—xr—x The owner of the fils may read, writs, and execurs the file. Usars in the

fils"s group, and all other users, may read and execute the fils.

—rw————— The owoer of the file may read and write the file. No other user can
access the file.

=rwxiwxrvx All usars may mad, wrire, and exacute the fils.

1.10.3 Permissions Dependencies.

29



The permissions granted to a file also depend on the permissions of the directory in which
the file 18 located. For example, even if a file 1s set to - rwxrwx rwx, other users cannot access
the file unless they have read and execute access to the directory in which the file is located.
For example, if Larry wanted to restrict access to all of his files, he could set the permissions
to his home directory /home/larry to - rwx- - -. In this way, no other user has access to his
directory, and all files and directories within it. Larry doesn't need to worry about the
individual permissions on each of his files.

In other words, to access a file at all, you must have execute access to all directories along the
file's pathname, and read (or execute) access to the file itself.

Typically, users on a Linux system are very open with their files. The usual set of permissions
given to files 1S - rw-r-r-, which lets other users read the file but not change it in any way.
The usual set of permissions given to directories 1s - rwxr-X1 -X, which lets other users look
through your directories, but not create or delete files within them.

However, many users wish to keep other users out of their files. Setting the permissions of a
file to - rw- - - - will prevent any other user from accessing the file. Likewise, setting the
permissions of a directory to - rwx- - - keeps other users out of the directory in question.

1.10.4 Changing permissions.

The command chmod is used to set the permissions on a file. Only the owner of a file may
change the permissions on that file. The syntax of chmod is
caumod {a,u, g0+, —Hr, v, x> Anamcy

Briefly, you supply one or more of all, user, group, or other. Then you specify whether you are
adding rights (+) or taking them away (-). Finally, you specify one or more of read, write, and
execute. Some examples of legal commands are:

achnod at+r staff
(Jives all users road access to e fils.

chmod +r stuff
Same as above—if none of a, u, g, or o is specified, a iz assumed.

chnod og—x stuff
Ramove execubs parmission from users other than the owner.

chmod oFrwx stuff
Lt the owmer of the fils read, writs, and execureths file.

chnod o—rux stuff
owoer and usars inthe file"s group.

30



1.11 Managing file links.

Links let you give a single file more than one name. Files are actually identified by the
system by their inode number, which is just the unique file system identifier for the file. A
directory 1s actually a listing of inode numbers with their corresponding filenames. Each
filename in a directory is a link to a particular inode.

1.11.1 Hard links.

The In command 1s used to create multiple links for one file. For example, let's say that you
have a file called foo in a directory. Using 1s -1, you can look at the inode number for this

file.
Fhomeflarryd 1a —-i Foo

22192 Eoo

JThomeflaccyP

Here, foo has an inode number of 22192 in the file system. You can create another link to foo,
named bar, as follows:

fhowef larryd In Foa har

With Is -1, you see that the two files have the same inode.
Fhomeflarryd 1a —-i Foo bar

22192 bar 22192 Eoo

Jhomeflaczyh

Now, specifying either foo or bar will access the same file. If you make changes to foo,
those changes appear in bar as well. For all purposes, foo and bar are the same file.

These links are known as hard links because they create a direct link to an inode. Note that you
can hard-link files only when they're on the same file system; symbolic links (see below) don't
have this restriction.

When you delete a file with rm, you are actually only deleting one link to a file. If you use the
command

fhomes larry® m oo

then only the link named foo is deleted, bar will still exist. A file is only truly deleted on the
system when it has no links to it. Usually, files have only one link, so using the rm command
deletes the file. However, if a file has multiple links to it, using rm will delete only a single
link; in order to delete the file, you must delete all links to the file.

31



The command 1s -1 displays the number of links to a file (among other information).
HNomeslarryd la -1 Zoo bar

T Tt S ook _  oroot _____ 12 Aug 5 16:5. bar
W —rE— LA ok, L ek e 12 Ry, S5 16 50, Fon
HNomeflarcyd

The second column in the listing, ~ 2", specifies the number of links to the file.

As it turns out, a directory 1s actually just a file containing information about link-to-inode
associations. Also, every directory contains at least two hard links: **." (a link pointing to
itself), and ~. ." (a link pointing to the parent directory). The root directory (/) ™. ." link just

points back to /. (In other words, the parent of the root directory is the root directory itself.)

1.11.2 Symbolic links.

Symbolic links, or symlinks, are another type of link, which are different from hard links. A
symbolic link lets you give a file another name, but doesn't link the file by inode.

The command In -s creates a symbolic link to a file. For example, if you use the command
Ffhomef larryR In -a Foo bar
you will create a symbolic link named bar that points to the file foo. If youuse 1s -1, you'll

see that the two files have different inodes, indeed.
HNomeflareyd & -ijoo bar

22193 bar 21192 Foo

Fomeflarecyd

However, using 1s -1, we see that the file bar is a symlink pointing to foo.
Fhomeflarry$ la -1 Zoo bar

Fhome f 1arryB

The file permissions on a symbolic link are not used (they always appear as rwx rwx rwx).
Instead, the permissions on the symbolic link are determined by the permissions on the target
of the symbolic link (in our example, the file foo).

Functionally, hard links and symbolic links are similar, but there are differences. For one thing,
you can create a symbolic link to a file that doesn't exist; the same 1s not true for hard links.
Symbolic links are processed by the kernel differently than are hard links, which 18 just a
technical difference but sometimes an important one. Symbolic links are helpful because they
1dentify the file they point to; with hard links, there is no easy way to determine which files are
linked to the same inode.

Links are used in many places on the Linux system. Symbolic links are especially important to
the shared library images in /11b. See page —I for more information.

32


http://www.tldp.org/LDP/gs/node6.html�

1.12 Job control.

1.12.1 Jobs and processes.

Job control is a feature provided by many shells (including bash and tcsh) that let you
control multiple running commands, or jobs, at once. Before we can delve much further, we
need to talk about processes.

Every time you run a program, you start what is called a process. The command ps displays
a list of currently running processes, as shown here:
Jhome/larryh pa

PID TT STAT TIME COMMMID

264 1 s d:03 (bash)
161 I R 0:00 pa
FThomeflarryh

The PID listed 1n the first column 1s the process ID, a unique number given to every running
process. The last column, COMMAND, is the name of the running command. Here, we're looking
only at the processes which Larry himself 1s currently running. (There are many other
processes running on the system as well--""ps -aux" lists them all.) These are bash (Larry's
shell), and the ps command itself. As you can see, bash 1s running concurrently with the ps
command. bash executed ps when Larry typed the command. After ps has finished running
(after the table of processes 1s displayed), control is returned to the bash process, which
displays the prompt, ready for another command.

A running process 1s also called a job. The terms process and job are interchangeable.
However, a process 18 usually referred to as a ~job" when used in conjunction with job
control--a feature of the shell that lets you switch between several independent jobs.

In most cases users run only a single job at a time--whatever command they last typed to the
shell. However, using job control, you can run several jobs at once, and switch between them
as needed.

How might this be useful? Let's say you are editing a text file and want to interrupt your
editing and do something else. With job control, you can temporarily suspend the editor, go
back to the shell prompt and start to work on something else. When you're done, you can

33



switch back to the editor and be back where you started, as if you didn't leave the editor. There
are many other practical uses of job control.

1.12.2 Foreground and background.

Jobs can either be in the foreground or in the background. There can only be one job in the
foreground at a time. The foreground job 1s the job with which you interact--it receives input
from the keyboard and sends output to your screen, unless, of course, you have redirected
input or output, as described starting on page —). On the other hand, jobs in the background do
not receive input from the terminal--in general, they run along quietly without the need for
Interaction.

Some jobs take a long time to finish and don't do anything interesting while they are running.
Compiling programs 1s one such job, as 1s compressing a large file. There's no reason why you
should sit around being bored while these jobs complete their tasks; just run them 1in the
background. While jobs run in the background, you are free to run other programs.

Jobs may also be suspended. A suspended job is a job that is temporarily stopped. After you
suspend a job, you can tell the job to continue in the foreground or the background as needed.
Resuming a suspended job does not change the state of the job in any way--the job continues
to run where it left off.

Suspending a job 1s not equal to interrupting a job. When you interrupt a running process (by
pressing the interrupt key, which is usually Ctrl-C)wr, the process 1s killed, for good. Once the
job 1s killed, there's no hope of resuming it. You'll must run the command again. Also, some
programs trap the interrupt, so that pressing Ctrl-C won't immediately kill the job. This 1s to let
the program perform any necessary cleanup operations before exiting. In fact, some programs
don't let you kill them with an interrupt at all.

1.12.3 Backgrounding and killing jobs.

Let's begin with a simple example. The command yes 1s a seemingly useless command that
sends an endless stream of y's to standard output. (This 1s actually useful. If you piped the
output of yes to another command which asked a series of yes and no questions, the stream of
y's would confirm all of the questions.)

Try it out:
Fhome /larryd yen

¥

L

The y's will continue ad nfinitum. You can kill the process by pressing the interrupt key,

34


http://www.tldp.org/LDP/gs/node5.html�
http://www.tldp.org/LDP/gs/footnode.html�

which 1s usually Ctrl-C. So that we don't have to put up with the annoying stream of y's, let's
redirect the standard output of yes to /dev/null. As you may remember, /dev/null acts as
a black hole" for data. Any data sent to it disappears. This is a very effective method of
quieting an otherwise verbose program.

JhomeFflarryk yea D> Fder/null

Ah, much better. Nothing 1s printed, but the shell prompt doesn't come back. This 18 because
yes 1s still running, and is sending those inane y's to /dev/null. Again, to kill the job, press
the interrupt key.

Let's suppose that you want the yes command to continue to run but wanted to get the shell
prompt back so that you can work on other things. You can put yes into the background,
allowing 1t to run, without need for interaction.

One way to put a process in the background is to append an ~*&" character to the end of the

command.
Ffhome! larry$® yea > fdev/inull &

(1] 164

fhome! larryh

As you can see, the shell prompt has returned. But what 1s this “[1] 164"? And 1s the yes
command really running?

The " [1]" represents the job number for the yes process. The shell assigns a job number to
every running job. Because yes 1s the one and only job we're running, it 1s assigned job
number 1. The 164" 1s the process ID, or PID, number given by the system to the job. You
can use either number to refer to the job, as you'll see later.

You now have the yes process running in the background, continuously sending a stream of

y's to /dev/null. To check on the status of this process, use the internal shell command jobs.
Fhome flarryd joba

1]+  Bunning,
FThomeflaczyh
Sure enough, there it 1s. You could also use the ps command as demonstrated above to check
on the status of the job.

yes >fdev/null _ &

To terminate the job, use the k111 command. This command takes either a job number or a
process ID number as an argument. This was job number 1, so using the command

Flwmc! laccyP® hill %1
kills the job. When identifying the job with the job number, you must prefix the number with a

percent (%") character.

35



Now that you've killed the job, use jobs again to check on it:
fheme /larxyd joba

[l1]+ Terminated yves »/dew/null

Fhome flarxv#
The job 1s 1n fact dead, and 1f you use the jobs command again nothing should be printed.

You can also kill the job using the process ID (PID) number, displayed along with the job ID
when you start the job. In our example, the process ID 1s 164, so the command
FrawomeSlareed kill 164

1S equivalent to

FfhomeS larryPd kill il
You don't need to use the %" when referring to a job by its process 1D.

1.12.4 Stopping and restarting jobs.

There 1s another way to put a job into the background. You can start the job normally (in the
foreground), stop the job, and then restart it in the background.

First, start the yes process in the foreground, as you did before:

fhomeflarryh; yea > Fdew/null
Again, because yes 1s running in the foreground, you shouldn't get the shell prompt back.

Now, rather than interrupt the job with Ctrl-C, suspend the job. Suspending a job doesn't kill it:
it only temporarily stops the job until you restart it. To do this, press the suspend key, which 1s

usually Ctrl-Z.
Jhomerlarry$ yea > fdev/null

(1]t . Stopped,,
Jhomeflarcy$
While the job is suspended, it's simply not running. No CPU time 1s used for the job. However,

you can restart the job, which causes the job to run again as if nothing ever happened. It will
continue to run where it left off.

yes >/dev/null

To restart the job in the foreground, use the fg command (for * foreground").
Fhome/larrr$ Eg

vea »/dev/anll
The shell displays the name of the command again so you're aware of which job you just put

into the foreground. Stop the job again with Ctrl-Z. This time, use the bg command to put the
job 1nto the background. This causes the command to run just as if you started the command

with 7 &" as 1n the last section.
fhomeflarrv® bg

1]+ yea >/dev/null &
Ffhomef larryh

36



And you have your prompt back. Jobs should report that yes 1s indeed running, and you can
kill the job with k111 as we did before.

How can you stop the job again? Using Ctrl-Z won't work, because the job 1s 1n the
background. The answer 1s to put the job in the foreground with fg, and then stop it. As it
turns out, you can use fg on either stopped jobs or jobs in the background.

There 1s a big difference between a job in the background and a job that is stopped. A stopped
job 1s not running--it's not using any CPU time, and it's not doing any work (the job still
occupies system memory, although 1t may have been swapped out to disk). A job in the
background 1s running and using memory, as well as completing some task while you do other
work.

However, a job in the background may try to display text on your terminal, which can be
annoying if you're trying to work on something else. For example, if you used the command
fhome/ larcy® yea &

without redirecting stdout to /dev/null, a stream of y's would be displayed on your screen,
without any way for you to interrupt it. (You can't use Ctrl-C to interrupt jobs in the
background.) In order to stop the endless y's, use the fg command to bring the job to the
foreground, and then use Ctrl-C to kill it.

Another note. The fg and bg commands normally affect the job that was last stopped
(indicated by a ~"+" next to the job number when you use the jobs command). If you are
running multiple jobs at once, you can put jobs in the foreground or background by giving the
job ID as an argument to fg or bg, as in

Jhome/larryh; Eqg 4l
(to put job number 2 into the foreground), or

fhomes larcyP bg %3
(to put job number 3 into the background). You can't use process ID numbers with fg or bg.

Furthermore, using the job number alone, as in

Jhomeflarryh 411
1S equivalent to

Fhome flarry; Eq 4d

Just remember that using job control 1s a feature of the shell. The fg, bg and jobs commands
are internal to the shell. If for some reason you use a shell that doesn't support job control,
don't expect to find these commands available.

In addition, there are some aspects of job control that differ between bash and tcsh. In fact,
some shells don't provide job control at all--however, most shells available for Linux do.

37



1.13 Using the +: editor.

A text editor 1s a program used to edit files that are composed of text: a letter, C program, or
a system configuration file. While there are many such editors available for Linux, the only
editor that you are guaranteed to find on any UNIX or Linux system 1s vi-- the ~visual
editor." v1 1s not the easiest editor to use, nor is it very self-explanatory. However, because vi
1s so common 1n the UNIX/Linux world, and sometimes necessary, it deserves discussion here.

Your choice of an editor 1s mostly a question of personal taste and style. Many users prefer
the baroque, self-explanatory and powerful emacs--an editor with more features than any other
single program in the UNIX world. For example, Emacs has its own built-in dialect of the
LISP programming language, and has many extensions (one of which 1s an Eliza-like artificial
intelligence program). However, because Emacs and its support files are relatively large, it
may not be installed on some systems. v1, on the other hand, is small and powerful but more
difficult to use. However, once you know your way around vi, it's actually very easy.

This section presents an introduction to vi--we won't discuss all of its features, only the ones
you need to know to get started. You can refer to the man page for vi if you're interested in
learning more about this editor's features. Alternatively, you can read the book Learning the vi
Editor from O'Reilly and Associates, or the V/ 7utorial from Specialized Systems Consultants
(SSC) Inc. See AppendixA for information.

1.13.1 Concepts.

While using v1, at any one time you are in one of three modes of operation. These modes are
called command mode, insert mode, and /ast /ine mode.

When you start up vi, you are in command mode. This mode lets you use commands to edit
files or change to other modes. For example, typing ~ x" while in command mode deletes the
character underneath the cursor. The arrow keys move the cursor around the file you're editing.
Generally, the commands used in command mode are one or two characters long.

You actually insert or edit text within zzsert mode. When using vi, you'll probably spend
most of your time 1n this mode. You start insert mode by using a command such as 1" (for
“1nsert”) from command mode. While 1n 1nsert mode, you can insert text into the document at
the current cursor location. To end insert mode and return to command mode, press Esc.

Last line mode 1s a special mode used to give certain extended commands to vi. While typing
these commands, they appear on the last line of the screen (hence the name). For example,
when you type ~:" in command mode, you jump into last line mode and can use commands
like ““wq" (to write the file and quit vi), or ~"q!" (to quit vi without saving changes). Last line

38


http://www.tldp.org/LDP/gs/app-sources/node1.html

mode 1s generally used for vi commands that are longer than one character. In last line mode,
you enter a single-line command and press Enter to execute it.

1.13.2 Starting vi.

The best way to understand these concepts 1s to fire up vi and edit a file. The example
““screens” below show only a few lines of text, as if the screen were only six lines high instead
of twenty-four.

The syntax for vi is

wi Hlerssine
where filename is the name of the file to edit.

Start up vi by typing

fhomeflarry¥ vi bteakt
to edit the file test. You should see something like

"test" [Uew Eile]

AT
~

The column of characters indicates you are at the end of the file. The represents the cursor.

1.13.3 Inserting text.

The v1 program is now in command mode. Insert text into the file by pressing 1, which places
the editor into 1nsert mode, and begin typing.

Uow iz the Lime for all good men to come bo Ehe aid
oF the party.

Type as many lines as you want (pressing Enter after each). You may correct mistakes with the
Backspace key.

To end 1nsert mode and return to command mode, press Esc.

39



In command mode you can use the arrow keys to move around in the file. (If you have only
one line of text, trying to use the up- or down-arrow keys will probably cause vi to beep at
you.)

There are several ways to insert text other than the 1 command. The a command inserts text
beginning after the current cursor position, instead of at the current cursor position. For
example, use the left arrow key to move the cursor between the words ““good" and ~“men."

Uow ia the time for all good men to come to the aid
oF the party.

Press a to start insert mode, type ~wo", and then press Esc to return to command mode.

Uoss is the time for all good women to come to Ehe aid
of the party.

To begin inserting text at the next line, use the o command. Press o and enter another line or
two:

Uow ia the time for all good humana to come Lo the
ajid of the party.
Afterwards, we‘ll go out For pizza am beer.

1.13.4 Deleting text.

From command mode, the x command deletes the character under the cursor. If you press x
five times, you'll end up with:

40



Uoss is the time for all good humans to come to the
aid ofF the party.
Aftervarda, we’ll go aut For pi==a and

Now press a and insert some text, followed by esc:

Uow is the time for all good humans to come to the
aid of the party.

Afterwards, we‘ll go out For pizza amd Diet Cobke.

You can delete entire lines using the command dd (that 1s, press d twice in a row). If the cursor
1s on the second line and you type dd, you'll see:

Uoss is the time for all good humans to come bto the
aid ofF the party.

To delete the word that the cursor 1s on, use the dw command. Place the cursor on the word
““good", and type dw.

Uow is bhe btime for all humsans to come to bhe aid oF
the party.

1.13.5 Changing text.

You can replace sections of text using the R command. Place the cursor on the first letter in
“party”, press R, and type the word ““hungry".

41



Uow ia the Lime for all humans Lo come Lo Ehe aid oF
the hungry.

Using R to edit text 1s like the 1 and a commands, but R overwrites, rather than inserts, text.

The r command replaces the single character under the cursor. For example, move the cursor
to the beginning of the word “"Now", and press r followed by C, you'll see:
Cow is the time for all humsans to come to the aid oF
the hungry.

The " ~" command changes the case of the letter under the cursor from upper- to lower-case,
and back. For example, if you place the cursor on the 0" in ~~Cow" above and repeatedly
press ~, you'll end up with:

COW IS THE TIME FOR ALL WOMEU TO COME TO THE AID OF
THE HOUGRE.

1.13.6 Commands for moving the cursor.

You already know how to use the arrow keys to move around the document. In addition, you
can use the h, j, k, and | commands to move the cursor left, down, up, and right, respectively.
This comes in handy when (for some reason) your arrow keys aren't working correctly.

The w command moves the cursor to the beginning of the next word; the b command moves it
to the beginning of the previous word.

The 0 command (that's the zero key) moves the cursor to the beginning of the current line, and
the $ command moves it to the end of the line.

42



When editing large files, you'll want to move forwards or backwards through the file a
screenful at a time. Pressing Ctrl-F moves the cursor one screenful forward, and Ctrl-B moves
it a screenful back.

To move the cursor to the end of the file, press G. You can also move to an arbitrary line; for
example, typing the command 10G would move the cursor to line 10 1n the file. To move to
the beginning of the file, use 1G.

You can couple moving commands with other commands, such as those for deleting text. For
example, the d$ command deletes everything from the cursor to the end of the line; dG deletes
everything from the cursor to the end of the file, and so on.

1.13.7 Saving files and quitting vi.

To quit v1 without making changes to the file, use the command :q!. When you press the
" the cursor moves to the last line on the screen and you'll be in last line mode.
CO¥ IS THE TIME FOB ALL HOMEI TO COME TO THE AID OF
THE HUUGRY.

In last line mode, certain extended commands are available. One of them is q!, which quits vi
without saving. The command :wq saves the file and then exits vi. The command ZZ (from
command mode, without the ~:") 1s equivalent to :wq. If the file has not been changed since
the last save, 1t merely exits, preserving the modification time of the last change. Remember

that you must press Enter after a command entered in last line mode.

To save the file without quitting vi, use :w.

1.13.8 Editing another file.

To edit another file, use the : e command. For example, to stop editing test and edit the file
foo instead, use the command

COH IS THE TIME FOR ALL WOMEU TO COME TO THE AID OF
NG AUUGRY.

43



If you use : e without saving the file first, you'll get the error message
[vo write aince last change ("iedit!" overridea) |

which means that vi doesn't want to edit another file until you save the first one. At this point,
you can use :w to save the original file, and then use : e, or you can use the command

COW IS THE TIME FOR ALL WOMEU TO COME TO THE AID OF
THE HUUGEY.

rel  Fon

The 1" tells vi that you really mean it--edit the new file without saving changes to the first.

1.13.9 Including other files.

If you use the : r command, you can include the contents of another file in the current file.
For example, the command

1~ Fon.bEmk
inserts the contents of the file foo. txt in the text at the location of the cursor.

1.13.10 Running shell commands.

You can also run shell commands within vi. The : r! command works like : r, but rather than
read a file, it inserts the output of the given command into the buffer at the current cursor
location. For example, if you use the command
=rl I1a —F
you'll end up with
COM IJ TR TDME FOB ALL WOMMI TO COMB TO TIOB AID OF
THE HOUGRY.
letteras
miac/

PHpReL s

You can also “shell out" of vi, in other words, run a command from within vi, and return to
the editor when you're done. For example, if you use the command

H la

the 1s -F command will be executed and the results displayed on the screen, but not inserted
into the file you're editing. If you use the command

zahell

v1 starts an instance of the shell, letting you temporarily put vi ~on hold" while you execute
other commands. Just log out of the shell (using the exit command) to return to vi.

44



1.13.11 Getting vi help.

v1 doesn't provide much in the way of interactive help (most Linux programs don't), but you
can always read the man page for vi. vi is a visual front-end to the ex editor; which handles
many of the last-line mode commands in vi. So, in addition to reading the man page for vi,

see ex as well.

1.14 Customizing your environment.

A shell provides many mechanisms to customize your work environment. As mentioned
above, a shell 1s more than a command interpreter--it 1s also a powerful programming language.
Although writing shell scripts 18 an extensive subject, we'd like to introduce you to some of the
ways that you can simplify your work on a Linux system by using these advanced features of
the shell.

As mentioned before, different shells use different syntaxes when executing shell scripts. For
example, Tcsh uses a C-like syntax, while Bourne shells use another type of syntax. In this
section, we won't be encountering many differences between the two, but we will assume that
shell scripts are executed using the Bourne shell syntax.

3.14.1 Shell scripts.

Let's say that you use a series of commands often and would like to save time by grouping

all of them together into a single ““command". For example, the three commands
fhomeflarryh cat chapterl chapter? chapterl > book

Fhome flarryP we -1 book

JhomeflarryP lp book

concatenates the files chapterl, chapter2, and chapter3 and places the result in the file
book. The second command displays a count of the number of lines in book, and the third
command lp book prints book.

Rather than type all these commands, you can group them into a shell script. The shell script

used to run all these commands might look like this:
$1/binfah

# A shell acript bto create amnd print the book

cat chapterl chapter? chapter] > book

we -1 book

1p book

Shell scripts are just plain text files; you can create them with an editor such as emacs or vi,
which is described starting on page .

Let's look at this shell script. The first line, ~#! /bin/sh", identifies the file as a shell script
and tells the shell how to execute the script. It instructs the shell to pass the script to /bin/sh
for execution, where /bin/sh is the shell program itself. Why 1s this important? On most

45


http://www.tldp.org/LDP/gs/node5.html�

Linux systems, /bin/sh is a Bourne-type shell, like bash. By forcing the shell script to run
using /bin/sh, you ensure that the script will run under a Bourne-syntax shell (rather than a C
shell). This will cause your script to run using the Bourne syntax even if you use tcsh (or
another C shell) as your login shell.

The second line 1s a comment. Comments begin with the character " #" and continue to the
end of the line. Comments are ignored by the shell--they are commonly used to identify the
shell script to the programmer and make the script easier to understand.

The rest of the lines in the script are just commands, as you would type them to the shell
directly. In effect, the shell reads each line of the script and runs that line as if you had typed it
at the shell prompt.

Permissions are important for shell scripts. If you create a shell script, make sure that you
have execute permission on the script in order to run it. When you create text files, the default
permissions usually don't include execute permission, and you must set them explicitly. See
the discussion of file permissions on page - for details. Briefly, if this script were saved in the
file called makebook, you could use the command

Fhomeflarry} chaod wix makebook
to give yourself execute permission for the shell script makebook.

You can use the command

Jhomet larryP makebook
to run all the commands 1n the script.

1.14.2 Shell variables and the environment.

A shell lets you define variables, as do most programming languages. A variable is just a
piece of data that 1s given a name.

tcsh, as well as other C-type shells, use a different mechanism for setting variables than is
described here. This discussion assumes the use of a Bourne shell like bash. See the tcsh
manual page for details.

N

When you assign a value to a variable (using the =" operator), you can access the variable by
prepending a ~*$" to the variable name, as demonstrated below.

fhomeflarryd foo="‘hello thexre”*

The variable foo is given the value hello there. You can then refer to this value by the

variable name prefixed with a **$" character. For example, the command
Shome” laccy? echo fEoo

hella Faere

Fhomef larcy¥

46


http://www.tldp.org/LDP/gs/node5.html�

produces the same results as
HNomerlarcyd echa *"“hella there®

hella Exere
Fromaflacerh

These variables are internal to the shell, which means that only the shell can access them. This
can be useful in shell scripts; if you need to keep track of a filename, for example, you can
store 1t in a variable, as above. Using the set command displays a list of all defined shell
variables.

However, the shell lets you export variables to the environment. The environment 1s the set of
variables that are accessible by all commands that you execute. Once you define a variable
inside the shell, exporting 1t makes the variable part of the environment as well. Use the
export command to export a variable to the environment.

Again, here we differ between bash and tcsh. If you use tcsh, another syntax is used for
setting environment variables (the setenv command 1s used). See the tcsh manual page for
more information.

The environment 1s very important to the UNIX system. It lets you configure certain
commands just by setting variables which the commands know about.

Here's a quick example. The environment variable PAGER 1s used by the man command and it
specifies the command to use to display manual pages one screenful at a time. If you set
PAGER to the name of a command, it uses that command to display the man pages, instead of
more (which is the default).

Set PAGER to ““cat". This causes output from man to be displayed to the screen all at once,
without pausing between pages.

FhawomeSlarcyd PAGER=CaAL
Now, export PAGER to the environment.

Fhome Flarrv} export PAGER
Try the command man 1s. The man page should fly past your screen without pausing for you.

Now, if we set PAGER to ““more", the more command 1s used to display the man page.
Ffhomef larryF PAGER=mOTE

Note that we don't have to use the export command after we change the value of PAGER. We
only need to export a variable once; any changes made to it thereafter will automatically be
propagated to the environment.

It 1s often necessary to quote strings in order to prevent the shell from treating various
characters as special. For example, you need to quote a string in order to prevent the shell from
interpreting the special meaning of characters such as ~*", = 7" or a space. There are many
other characters that may need to be protected from interpretation. A detailed explanation and
desription of quoting 1s described in SSC's Bourne Shell Tutorial.

47



The manual pages for a particular command tell you if the command uses any environment
variables. For example, the man man page explains that PAGER 1s used to specify the pager
command.

Some commands share environment variables. For example, many commands use the EDITOR
environment variable to specify the default editor to use when one 1s needed.

The environment 1s also used to keep track of important information about your login session.
An example 1s the HOME environment variable, which contains the name of your home

directory.
Fhome ! larry popwrad acha 5A0ME

Fhomeflarxy

Another interesting environment variable 1s PS1, which defines the main shell prompt. For

example,
fhome! larryd P31="'Your command, please: *°

Your command, please:
To set the prompt back (which contains the current working directory followed by a ~ #"

symbol),
Your commawl, please: PS1="‘‘\wk_**

HNomeflarcyh
The bash manual page describes the syntax used for setting the prompt.

The PATH environment variable.

When you use the 1s command, how does the shell find the 1s executable itself? In fact, 1s
1S 1n /bin on most systems. The shell uses the environment variable PATH to locate executable
files for commands you type.

For example, your PATH variable may be set to

fbin:fusr/bin: fuaxrflocal/hbin:.

This 1s a list of directories for the shell to search, each directory separated by a = :". When you
use the command 1s, the shell first looks for /bin/1s, then /usr/bin/1s, and so on.

Note that the PATH has nothing to do with finding regular files. For example, if you use the
command

fhome! larryd cp Foo bar

the shell does not use PATH to locate the files foo and bar--those filenames are assumed to be
complete. The shell only uses PATH to locate the cp executable.

This saves you time, and means that you don't have to remember where all the command
executables are stored. On many systems, executables are scattered about in many places, such
as /usr/bin, /bin, or /usr/local/bin. Rather than give the command's full pathname
(such as /usr/bin/cp), you can set PATH to the list of directories that you want the shell to
automatically search.

48



Notice that PATH contains ~.", which 1s the current working directory. This lets you create a
shell script or program and run it as a command from your current directory without having to
specify 1t directly (as in . /makebook). If a directory 1sn't in your PATH, then the shell will not
search it for commands to run; this also includes the current directory.

1.14.3 Shell imitialization scripts.

In addition to the shell scripts that you create, there are a number of scripts that the shell
itself uses for certain purposes. The most important of these are initialization scripts, which are
scripts executed by the shell when you log 1n.

The 1nitialization scripts themselves are simply shell scripts. However, they initialize your
environment by executing commands automatically when you log in. If you always use the
ma1l command to check your mail when you log in, you place the command in the
mitialization script so 1t will execute automatically.

Both bash and tcsh distinguish between a login shell and other invocations of the shell. A
login shell 1s a shell invoked when you log 1n. Usually, 1t's the only shell you'll use. However,
if you ““shell out" of another program like v1, you start another instance of the shell, which
1sn't your login shell. In addition, whenever you run a shell script, you automatically start
another nstance of the shell to execute the script.

The mitialization files used by bash are: /etc/profile (set up by the system
administrator and executed by all bash users at login time), $HOME/ .bash_profile
(executed by a login bash session), and $HOME/ . bashrc (executed by all non-login
instances of bash). If .bash_profile is not present, .profile is used instead.

tcsh uses the following 1nitialization scripts: /etc/csh. login (executed by all tcsh users
at login time), $HOME/ . tcshre (executed at login time and by all new instances of tcsh),
and $HOME/ . login (executed at login time, following . tcshre). If . tcshre is not
present, .cshrc 1s used instead.

A complete guide to shell programming would be beyond the scope of this book. See the
manual pages for bash or tcsh to learn more about customizing the Linux environment.

Reference:

49



http://www.tldp.org/LDP/gs/nodeS.html#SECTION00500000000000000000

50



