

•
內容
·快速原型科技中心服務
·激光抄數原理
·快速原型技術
·鈦金屬鑄造於其產品開發之應用
·激光焊接技術
·快速原型一站式個案研究
·參觀快速原型科技中心

••••••

Technology Integrated Product Development Cycle

Changes is inevitable

Customer Expectation...

Rapid Prototyping

tre 心

Rapid Prototyping Technology Center (RPTC)

Background and Role

Rapid Prototyping Technology Center (RPTC) Background

- Funded by Industry & Technology Development Council
- Found in 1994
- Introduced RP technology & support new product development
- Provide one stop product design and development services to local designers and industries

Rapid Prototyping Technology Center (RPTC) Role of RPTC(1)

- Product Innovation and market analysis
 - Intellectual property application
 - Technology search
 - Market research
- Support product design & development
 - Industrial design
 - Engineering and functional design
 - Product compliance with international standards
 - Rapid prototyping and concept modeling
- Production support & planning
 - Mass production planning and control
 - Tooling development
 - Quality assurance

Rapid Prototyping Technology Center (RPTC) Role of RPTC(2)

- Product promotion & business planning
 - Marketing and promotion
 - Branding
 - Business matching
- Authorized training center for CAD/CAID & Animation
- Promote concepts of product visualization and e-marketing

Rapid Prototyping Technology Center (RPTC)

3D Geometric Data Capture

Type of 3D Geometric data Capture

- Contact type
 - Mechanical touching probe
 - Suitable for engineering component digitizing
- Non-contact type
 - Laser scanner*
 - Optical scanner
 - Suitable for fine detailed product digitizing

Contact type digitizer

- Adv.
 - high accuracy
 - low cost
 - selective digitizing (e.g. guide rail)
 - less data to handle
- Disadv.
 - medium digitizing speed
 - probe compensation required
 - part may move during contact
 - no soft parts
 - accuracy depends on operating environment
 - Plaster support may be needed

Non-contact type laser scanning

- Adv.
 - high speed
 - high resolution
 - automatic scanning
 - high detail
 - soft & fragile models allowed
 - less environment dependent
- Disadv.
 - dark or shinning surface
 - sharp edge
 - deep cavities

- Contact type
 - Touching Probe System

• Non-contact type

• Non-contact type

ATOS (high-end 3D Digitizer)

• Non-contact type laser scanning

Laser scanner system developed by HKPC

• Non-contact type laser scanning

• Non-contact type laser scanning

Hong Kong Productivity Counci

Rapid Prototyping Technology Center (RPTC) 3D Geometric Data Capture

• Non-contact type laser scanning

unci

香港生產力

Rapid Prototyping Technology Center (RPTC) 3D Geometric Data Capture

		Probe Type Digitizer	Laser Scanner	
1	Type of scanning	Contact type with rigid support needed	Non-contact type laser scanner	
2	Principle	Mechanical contact sensor and electronic meter to record point position	Laser and optical triangulation to measure point position	
3	Speed	Relatively slow	Relatively fast	
4	Scanning Process	Point by point digitizing, need human monitoring	Fully automatic area scan, no need human monitoring	
5	Resolution	Low to high (depends on type and price range)	Good (in general)	
6	Offset compensation	Need probe radius compensation	No compensation required	
7	Feature details	Constraint by probe diameter	Can capture fine feature details	
8	Deep slot and pit	OK with long probe arm	Need focusing level adjustment	
9	Plaster support	Plaster support needed which is time consuming	No need plaster support	
10	Direct CNC machining	Supported. Tool diameter and machining step over must match with probe size and scanning step over respectively	Supported. Machining options ranging from Rough, Semi- finish to Finish can be selected via CAD/CAM system	

Laser Scanning Case Study - Spectacle

Scan the spectacle sample by laser scanner

Merge point clouds to form a product

Scan the sample from different angles and merge them together to form a full detailed Facet model

Hong Kong

Productivity Counci

Merge point clouds to form a product

Scan the sample from different angles and merge them together to form a full detailed Facet model

Direct toolpath generation from STL file

Direct mill to fabricate mould

Using RP machine to produce prototype

Modify the design in CATD system

Rapid Prototyping Model

Quick Mould PU Model

Laser Scanning Case Study - Iron

Laser Scanning Case Study - Toy

Rapid Prototyping Technology Center (RPTC)

Rapid prototyping technology in RPTC

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

RP Benefits 好處

- Shortening the product development cycle and time to market
- 縮短產品開發時間
- Better communication with customers and market
- 幫助溝通
- Reducing manufacturing problems and cost
- 减低生產及開發成本
- Better quality due to the adoption of the same product model and database for design, engineering and manufacturing
- 改善產品質素
- Design Verification, fitting & interference checking
- 產品驗正測試

Common RP Systems in the World 常用快速原型系統

- Laminated Object Manufacturing(LOM) 層堆成型
- Selective Laser Sintering (SLS) 燒結成型
- Fused Deposition Modeling (FDM) 擠壓成型
- Stereolithography (SLA) 激光樹脂成型
- Digital Light Process (DLP) 數碼投影成型

Accelerating Product Development Through Rapid Prototyping

Laminated Object Manufacturing(LOM) 層堆成型

Laminate sheet paper or plastic sheet

每層由紙張或膠片重疊成型

•High speed CO₂ Laser cutting

•高速二氧化炭激光切邊

•No need for Support

•不須支撐

•Less expensive

• 成本較低

Laminated Object Manufacturing Principle 層堆成型原理

Selective Laser Sintering (SLS) 燒結成型

- 印代空
- Use high power CO₂ Laser 利用二氧化炭激光
- Inorganic binder and powdered material is to be sintered 燒結無機粉末
- Various choice of material e.g nylon (PA)多種材料可供使用
- Achieve functional testing (similar engineering plastic properties)
 可用作產品功能測試

Selective Laser Sintering Principle 燒結成型原理

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

- Fused deposition modeling (FDM)
 - Max. size of prototype: 350mm X 400mm X400mm
 - Resolution: 0.25mm per layer

Model brand: TITAN

Model brand: DIMENSION

Fused deposition modeling (FDM)

Mechanical Properties	Unit	ABS	Polycarbonate
Tensile Strength	psi	3,132	7,635
Tensile Elongation at Break	psi	3.18%	3.6%
Flexural Strength	psi	4,975	11,068
Hardness	psi	78	78
Liquifier Temperature	F°	290°	340°

- ABS and PC can be similar as final product material
- ABS 和 PC 物料與市場產品相附合
- High Strength and Ductibility ABS 和 PC 物料有高強度和延展力

- Material can satisfy your client's requirement e.g clamp
- ABS 和 PC 物料能附合客人的要求

Fused deposition modeling (FDM)

- Extrude molten plastic material 擠壓塑料
- Deposit through moving orifice or tube溶料由管口排出
- Material cooled and solidified to form layers of object 物料冷郤成型
- Require support structure須支撐撐
- Various choice of plastic filament 多種材料選擇
- Efficient machine time (about 1 2 days)
 快速成型時間 介乎 於一至兩天完成

Fused deposition modeling (FDM)

Hong Kong Productivity Counci

FDM Case Study - Toy Grade projector

2D drawing

Mechanical Design

FDM RP Samples

<u>ABS</u> and <u>PC</u> parts by <u>FDM</u> Technology

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

- Fused deposition modeling (FDM)
 - Examples

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

- Stereolithography (SLA)
 - Max. size of prototype: 250mm X 250mm X 250 mm
 - Resolution: 0.05-0.15mm per layer

Model brand: 3D SYSTEM

Stereolithography (SLA)

Stereolithography (SLA)

- Laser: Solid state Nd:YVO, 354.7 nm, 1000 mW
- Optical system: Spot size (diameter): 0.20-0.29 mm
 - Maximum drawing speed: 762 mm/sec
 - Elevator: Vertical resolution: 0.0025 mm
 - Position repeatability: 0.0076 mm

- Minimum layer thickness: 0.05 mm (3 resolutions: 0.05, 0.10, 0.15mm per layer)

- Materials: photocurable liquid plastic (resin)

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

- Digital light processing (DLP)
 - Max. size of prototype: 142mm X190mm X 220mm
 - Resolution: 0.025mm per layer

Model brand: Perfactory

Rapid Prototyping Technology Center (RPTC) Rapid prototyping technology in RPTC

- Digital light processing (DLP)
 - Example

Rapid Prototyping Technology Center (RPTC)

Other RP Services

• Polishing & Painting(SLA)

• Polishing & Painting(FDM)

• Polishing & Painting(DLP)

• PU duplication & Silicon Mold

Silicon Mold

PU duplication

- Titanium casting
 - Casting process

From wax model to final product

Titanium casting machine

- Titanium casting
 - Other casting product

Watch Case

• Rapid jointing (Laser welding)

Welding of highly polished surfaces

- 3D-Modification of moulds through exact material adhesion
- Alteration of Cracks and damaged gates
- Welding of high carbon steels
- Treatment of powder metallurgical steels
- Restoration of edges and corners
- Deposit of wear and corrosion resistant layers

